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Spin-lattice relaxation times due to the interaction between the spin and the vibrations of in­
dividual atoms of a radical are calculated for radicals in a liquid. It is demonstrated that the 
direct, as well as the combinational ("two-phonon") relaxation transitions yield, as a rule, 
larger relaxation times than the Brownian rotational motion of the radical. 

MccONNELL1 has considered the mechanism 
of spin-lattice relaxation associated with the 
Brownian rotational motion of a radical as a whole 
in a liquid. In this case the relaxation transitions 
are due to the anisotropy of the spin-orbit and the 
hyperfine interactions and to the rotation of the 
radical. Al'tshuler and Valiev2 have proposed a 
different mechanism for the spin-lattice relaxa­
tion associated with the interaction of the spin 
with the orbital motion of the electron and with 
the normal vibrations of the complex ion in solu­
tion; however, as will be shown here, the method 
of calculation proposed by Al 'tshuler and Valiev2 
is incorrect. In this paper we shall examine in 
greater detail this mechanism for spin-lattice 
relaxation as applied to radicals in liquids. 

We shall discuss relaxation processes asso­
ciated with the intramolecular vibrations due to 
the Fermi interaction of the electron spin S with 
the nuclear spin I (the contribution of the spin­
orbit (S· L) and of the dipole-dipole (S· I) inter­
actions usually turns out to be smaller in the case 
of radicals; we also note that, if necessary, these 
interactions can be easily taken into account within 
the framework of the calculation proposed below). 
The spin-Hamiltonian of the unpaired electron in­
teracting with one of the nuclei of the radical has 
the form 

:Jf = g~SH +A Sf, (1) 

where the constant describing the Fermi interac­
tion is A = A ( Q), Q is the diplacements of the nu­
cleus of spin I from its equilibrium position R, 
and the remaining notation is the usual one. Fol­
lowing Al 'tshuler and Valiev, 2 we shall assume 
that the vibrations take place classically, i.e., 
Q = Q ( t). By expanding the quantity A in a power 
series in terms of the small displacements from 
the equilibrium position, and by restricting our-

selves to the linear and the quadratic terms, we 
obtain 

:Jf = ::ffo + V1 (t) + Vz (t), :Jf0 = ~ SH + A 0 SI.(2) 
where 

Q (t) Q2 (I) 
V1 (t) = A1 -R-SI, V2 (t) = A 2 ~ Sl, 

A= Ao +A1Q (t)!R +A 2 Q2(t)!R2 • (3) 

In formulas (2) and (3), Q ( t) is a random function 
describing the vibration of the nucleus under con­
sideration, modulated by the random interactions 
with the surrounding medium. 

We first evaluate the probability of relaxation 
transition per unit time due to the term V 1 ( t). By 
regarding the quantity V1 as a perturbation we ob­
tain for the transition probability between the mag­
netic levels k and k' 3 

-00 

where liWkk' is the spacing between the levels k 
and k', and cp(T) =Q(t)Q(t+T)/Q2 is the corre­
lation function for the random variable Q. 

In the case when the interaction of the vibra­
tions with the medium is large (much larger than 
the energy of the natural vibrations of the nucleus ) 
it is reasonable to assume for the correlation 
function 

cp (t') = exp { - I -r I he}, (5) 

where Tc is some characteristic correlation time. 
Then we immediately obtain from (4) 

(6) 

i.e., an expression analogous to formula (9) of the 
paper of Al 'tshuler and Valiev. 2 However, in the 
case under consideration of strong interaction it 
is not possible to relate the quantity T c to the op-
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FIG. 1. 

tical characteristics of an individual intramolecu­
lar vibration (as is done in reference 2). Indeed, 
the correlation function (5) yields for the spectral 
density of the nuclear vibrations J ( w ) the curve 
shown in Fig. 1, and this corresponds to a continu­
ous optical spectrum and to the absence of any 
spectral lines due to the natural vibrations of the 
nucleus. 

However, if the interaction of the natural vibra­
tions with the medium is small and may be treated 
as a perturbation of the characteristic vibrations, 
then a different expression is obtained for the cor­
relation function. Representing the quantity Q ( t) 
in the form 

Q (t) = q (t) cos (w0t +'I] (t)), (7) 

where w0 is the natural frequency of the vibra­
tions, while q and T/ are respectively the random 
amplitude and phase of the oscillator, and assum­
ing that q ( t) and T/ ( t) are not correlated with 
one another, we obtain the correlation function for 
the quantity Q ( t) in the form 

<p (T) = exp {-JT//Tc}COSWoT. (8) 

In this case we obtain from (4) 

Wkk' = ~~ ~ I (k I Sll k') 121 + (wo~cwkk')•-r~ (9) 

For WoTc » 1 the spectral density J ( w) has the 
form shown in Fig. 2; the maximum at w = Wo cor­
responds in the optical spectrum to a line due to 
the natural vibration of the nucleus, the breadth of 
this maximum being of the order of 1/Tc. 

We note that formulas (6) and (9) lead to essen­
tially different results, for in all the cases of in­
terest to us we have Wo » wkk'· 

As an example we evaluate the probability of 
the relaxation transition for an unpaired electron 
in the C atom of the CH fragment caused by the 
vibrations of the C-H bond (modulated by the mo­
tion of the medium). The constant A for the CH 
fragment has been evaluated by McConnell: 4 

A - 8Jt r.l r.l I (Cit) -I (itH) I 'Y (0) 12 (10) 
- 3 gi-'gHt-'H 21 (CH) ' 

where gH is the g-factor for the proton, f3H is 
the nuclear magneton, w( 0) is the value of the 
1s-wave function for the H atom at the origin; 

/(,J) 
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I( C7r) is the exchange integral between the 2p­
orbit for the unpaired electron of the C atom and 
the hybridized orbit of the C atom responsible 
for the C-H bond; I ( 7rH) is the exchange integral 
between the 2p-orbit of the C atom and the 1s­
orbit of the H atom; I ( CH) is the exchange in­
tegral between the hydridized orbit of the C atom 
and the 1s-orbit of the H atom. Keeping in mind 
that I ( 7rH) « I ( C7r ), we note that the dependence 
of A on Q is essentially determined by the de­
pendence on Q of the exchange integral I ( CH). 
The latter can be approximated by the formula5 

I (CH) = / 0 exp{- QIR};. (11) 

Thus, in formula (3) A1 = A0, and for the transition 
probability we have 

A2 2 . 2-rc 

Ww = h~ ;. I (k I Sl/ k') 121 + (wo- wkkfr~ (12) 

The quantity A0 can be estimated from the hyper­
fine structure of the electron paramagnetic reso­
nance (e.p.r.) spectra of the aromatic radicals, 
while q2 and Tc can be estimated as in the paper 
by Al'tshuler and Valiev; 2 finally, on assuming for 
the natural frequency of the vibrations of the C-H 

14 1015 -1 bond a magnitude of the order of 10 - sec , 
we obtain 

wkk' ~ 1 -- I0-3 sec-1 

and this corresponds to a spin-lattice relaxation 
time of the order of 103 - 1 sec. Taking the re­
laxation mechanism associated with deformational 
vibrations into account does not lead to any essen­
tial increase in the quantity wkk' which would be 
sufficient to explain the experimental data. 

The direct process considered above, that of 
transfer of energy from the spin system to thermal 
motion, is a process involving the transfer to the 
oscillator of a quantum of energy tiwkk', which is 
considerably smaller than the mean self energy 
of the oscillator. As can be seen from formula 
(9), the probability of this process is proportional 
to the spectral density of the coordinate of the os­
cillator far from the maximum (wkk' ~ J ( wkk' ), 
Wkk' « w0; cf. Fig. 2 ), and this is responsible for 
the low probability of relaxation transitions. From 
this point of view one might expect that those sec­
ond order processes will turn out to be more ef-
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fective which are associated with changes (actual 
or virtual) in the vibrational energy of the oscil­
lator by a quantity of the order of tlw0, which 
evidently occur with a probability proportional to 
the value of J ( w) at the maximum. 

If, as before, we treat the nuclear vibrations 
classically, then the effect just mentioned can be 
evaluated by taking into account the term V2(t) 
in the spin Hamiltonian (2). Let the two-dimen­
sional distribution function for the random vari­
able q be given by the normal distribution function 

1 { qi + q~ - 2pq,q. } 
F (qi, q2, T) = 2:n:cr2(1- p2)'/, exp - 2a2(f- p)2 ' 

(13) 
where a2 = q2 is the mean square amplitude of the 
oscillator, while p = p ( T ) is the correlation func­
tion for the random changes of the amplitude. For 
the random phase TJ we can choose a distribution 
function of the form 

P (TJ1, TJ2, T) - (2rtt1 6 (TJI- TJ2) exp {-! T I/ Tc } 

+ (2rc) - 2 (l - exp {-1 T I I -r~}), (14) 

where T~ is a time of the order of magnitude of 
the time between collisions. The distribution func­
tion (14) describes a process in which the phase 
of the oscillator does not change in the intervals 
between collisions, while the phase after a colli­
sion is not correlated with the value of the phase 
before the collision. We note that the function 
P ( TJ 1, TJ2, T) could also have been chosen of a 
different form; for what follows it is essential 
only that all the values of the phase should be 
equally probable, and that the correlation of TJ (t) 
and TJ ( t + T) should decrease with increasing 
time T. 

Further, we represent V 2 ( t) in the form 

V2 (t) = v; (t) + V2 (t) = v~ (t) + B s1 (15) 

and include the constant quantity B = A2Q2(t)/2R2 

in A0• Then for the evaluation of the probability 
of a transition under the influence of V2 ( t) we 
can apply a formula analogous to (4), where cp ( T) 

now denotes 

qJ (T) = Q2 (t) Q2 (t + T)j Q4 (t) 

[formula (4) is inapplicable to V2(t), since the 
quantity V 2 ( t ) V 2 ( t + T ) does not tend to zero as 
T-oo). 

By using (13) and (14) we easily obtain 

(16) 

cp(-r) = -i p2a4 + fa 4 exp {-1-rl IT;} cos 2ro0T (I + 2 p2). 
(17) 

Finally, by choosing p ( T) in the form p ( T) 

= exp (-IT 1/Tc ), we obtain for the transition 
probability 

A2 - 4Tc 
Whk' = 8h22R· I (k I Sll k') 12 (q2)21 -L 4 2 2 . (18) 

1 Wkk'Tc 

In expression (18) we have omitted the terms cor­
responding to the last term in (17), which leads in 
the expression for the spectral density of the quan­
tity Q2 ( t) to a maximum at the frequency w = 2w0• 

Estimating the quantity Wkk.' by means of for­
mula (18) in exactly the same manner in which we 
made an estimate of formula (12) we find that for 
w0 ~ 1014 -1015 sec-1 we have Wkk' ~ 103 -1 sec-1• 

Thus, the combined transition indeed turns out to 
be more effective than the direct transition dis­
cussed by Al 'tshuler and Valiev. 2 

Formulas (9) and (18) show that the mechanism 
of spin-lattice relaxation in radicals in liquids as­
sociated with the vibrational motion turns out to 
be, as a rule, less important (T1 ~ 10-3 sec) then 
the mechanism proposed by McConnell1 ( T 1 ~ 10-5 

sec). The predominance of the "vibrational" 
mechanism can apparently be expected in cases 
when: 1) the anisotropy 6.g of the g-factor and 
the anisotropy 6.A of the hyperfine interaction 
are both very small (Acr/R2 > 6.A and Acr/R2 

> 6.g{3H0; H0 is the constant external magnetic 
field), or 2) the hyperfine splitting is large, and 
the constant A is determined by exchange inte­
grals which depend on the coordinates correspond­
ing to low frequency vibrations. 
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