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The complete experiment on the scattering of particles with spins (0, 0), (0, Jt2 ), and (Jt2, 'l'2 ) 

is consistent with only two scattering amplitudes satisfying the unitarity condition and ana­
lytic in cos e in some vicinity of the segment - 1 ~ cos e ~ 1 if this experiment is invari­
ant with respect to helicity inversion, and with only one amplitude if this invariance is vio­
lated. 

1. FORMULATION OF THE PROBLEM 

THE analysis of the scattering of particles with 
different spins has met with considerable success 
in recent years. Among the processes investigated 
are the scattering of pions by protons and the inter­
action between protons and protons or neutrons. It 
is quite probable that the obtained results are 
unique although this has not yet been investigated. 

The purpose of an analysis of particle scatter­
ing at a fixed energy is to determine the scattering 
amplitudes from the results of an experiment 
equivalent to the "complete experiment." The 
concept of the complete experiment was introduced 
by Puzikov, Ryndin, and Smorodinski1 [1). This, 
still leaves open the question of the conditions for 
the existence and uniqueness of the solution of the 
unitarity integral equations, and also the possibil­
ity of obtaining their solution by some numerical 
means, if the observed quantities are subject to 
experimental errors. It is natural to regard as 
complete only an experiment that yields a unique 
result for the measured parameters or, more ac­
curately, a probability distribution with a single 
vertex. In light of this definition, the completeness 
of the "complete experiments" mentioned in [1] 

calls for verification. 
We consider here only the elastic scattering of 

particles with spins (0, 0), (0, %l, and (J'2, %). 
For the first of these the complete experiment 
consists in measuring the cross section a( e). 
For particles with spins ( 0, 'l'2 ) we consider only 
the set a( e), Pn (e), for although measurements 
of the components of the tensor that relates the 
initial and final polarizations of a beam (or target ) 
of spin 'l'2 particles are feasible, they are most in­
convenient experimentally. For the scattering of 
identical spin 1/ 2 particles we shall investigate 

only the set a, Pn, Dnn• Knn, Cnn· Each of the 
sets indicated here will be called for brevity the 
normal complete experiment. The uniqueness of 
the analysis of some other sets that are also 
equivalent to the complete experiment will be 
considered separately. 

The complete experiment, as noted by Mac­
Gregor et al [2], cannot be carried out in pure 
form, since no angular distribution can be meas­
ured at all angles and with absolute accuracy. 
Nonetheless, it is quite convenient to use the con­
cept of the complete experiment to prove the 
uniqueness of an analysis of real experiments, 
since it indicates the situation for sufficiently 
subtle experiments. 

2. COMPATIBILITY AND UNIQUENESS 

The existence and uniqueness of the solution 
of the problem of determining the scattering am­
plitude from the results of a normal complete ex­
periment will be examined under two supplemen­
tary assumptions: either the cross sections are 
sufficiently small, or else the scattering amplitude 
can be uniformly expanded in spherical functions. 

The conditions for the applicability of the first 
case are apparently quite rarely satisfied so that 
we shall consider it only for spinless particles. 
The integral equation for the phase shift a (e) in 
terms of the cross section a( e) is of the form [1] 

k \ ( (j (6') (j (6"))'/, 
a (6) =arc sin 4:rt J dQ cs (6) cos [a (6')- a (0")]. 

(2.1) 
A simple generalization of Newton's method of 
solving equations of the type a = F (a) shows that 
Eq. (2.1) can be solved by successive approxima­
tions (starting with a=c ), and has a unique solu­
tion in the interval -7T /2 < a < 1r /2, if 
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(and a second solution a 2 = 7f- a 1 in the interval 
7f /2 < a < 37r /2 ) . Calculating this derivative and 
using the identity 

1 ~a (fl) sin/ (fl) afl 1 < { 1- [~a (fl) cost (!l) aflrt. 

which is valid when jl a( e) I de < 1, we find that in 
order for the successive approximations to con­
verge it is sufficient to have 

k \ (cr(fl')cr(fl"))'/• 1 
4n .\ dQ cr (fl) < 2 · 

On the other hand, if I sin a ( e ) I = 1 for any 
angle in the interval 0 < e < 7f, then the curves 

(2.2) 

a ( e ) and 7f -a (e) cross and the successive ap­
proximations for the corresponding u( e) cannot 
converge. The latter case is possible, although 
not obligatory, if the left half of (2. 2) is larger 
than unity. On the other hand, if this quantity lies 
between% and 1, the approximations converge for 
some u( e) and diverge for others. This is con­
firmed by calculations with synthetic examples [3]. 

The condition (2.2) for the convergence of the 
successive approximations can be obtained also 
from the general theory of nonlinear integral 
equations [4]. On the other hand, in the more gen­
eral case this theory does not yield a proof for 
the presence of only two solutions of (2.1). 

We note that we had no need for any conditions 
for the existence of the solution. Apparently the 
arbitrary complete-experiment curves remain 
compatible (if u( e) ~ 0) also when condition (2.2) 
is violated and also for particles with spin. The 
situation changes appreciably however, if we stip­
ulate in addition that the scattering amplitude be 
representable by a sum of a known function and 
a uniformly and absolutely converging series of 
spherical functions, particularly a finite sum (to 
this end it is sufficient that the amplitude be ana­
lytic in cos e in a certain vicinity of the interval 
-1 s cos e s 1 ). Uniform and absolute converg­
ence of this series is essential for the products 
of such series to be integrable term by term in 
the unitarity equations. On the other hand, we ar­
rive at such series if the forces between the par­
ticles have a finite radius of action. 

Since 

it is sufficient, for uniform and absolute converg­
ence of the series in the scattering amplitude, that 

the limit of the product z2m+t by the coefficient of 
Pr( cos e) vanish as z-oo. 

The elements of the complete experiment, re­
garded as a uniformly convergent series in 
Pz (cos e ) or Pl (cos e ) , are in general not com­
patible if the observed quantities are chosen by 
guesswork or do not correspond to the assumed 
particle spins. Correct interpretation of the par­
ticles guarantees this compatibility automatically 
within the limits of experimental error. Unfortu­
nately, the conditions for analytic compatibility of 
the total-experiment curves cannot be expressed 
as yet in a readily conceivable form, except in the 
simplest cases. Such conditions would allow us to 
predict a part of the most complicated elements of 
the complete experiment, which are the most dif­
ficult to measure, from elements making up the 
necessary experiment [S,GJ, accurate to within one 
or several continuous parameters. 

We present the following examples of compati­
bility conditions: 

1) The curve 

a(e) = k-2 [AaPo + 6A1Pi(cos 8) + 6A~2(cos8)] 

can be regarded as the cross section for S, P 
scattering of spinless particles, if 

O<"Ao<"1, O<"A 2<"1, 

Ao- 3A2 A1 Ao- 3A2 
A1 A2 A2 =0; 
A 0 - 3A 2 A2 1 

2) the curves 

a(e) = k-2 [Ao +AI cos e] 

and 

a(e)P(e) = B1k-2 sine 

can correspond to S1; 2• P 1; 2 scattering of particles 
with spins ( 0,%) if 

-2 :::;;; AI :::;;; 2, -2 :::;;; B! :::;;; 2, 

Ao = B12 I (A12 + B12) + A1. 
3) The curve 

a(e) =k-2 [AaPo+A 1Pi(cose) +A~2(cos8)] 

can be the cross section of S, P scattering of par­
ticles with spins ( 0, 1,12 ) if[7J 

Ao2 :::;;; Ao + A1 + A2, (Ao- A1) 2 :::;;; Ao - A1 + A2. 

The need for satisfying the compatibility condi­
tion casts doubts on any successful use of numeri­
cal methods to find the analytic solutions of the 
unitarity conditions in the presence of experimen­
tal errors in the complete-experiment curves, un­
less we resort to finite parametrization. 
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Under the analyticity condition, the solution 
of the integral unitarity equations is equivalent 
to the solution of an infinite system of equations 
for the phase shifts and the mixing parameters in 
terms of the coefficients of the expansion of the 
experimental complete-experiment curves in 
Pz(cos ()) or P}(cos () ). To prove the uniqueness 
or, in the worst case, the duality of the solution of 
this problem we shall consider in Sees. 4-6, for 
each separate spin combination, auxiliary prob­
lems in which the number n of nonvanishing pa­
rameters of the scattering matrix (first phase 
shifts and mixing parameters in natural [5] order) 
will be assumed finite and specified. The com­
patibility of the systems will be ensured by the 
fact that we express the coefficients of expansion 
of the observed curves in terms of one of the so­
lutions (initial solution). 

The number of parameters n cannot be per­
fectly arbitrary, since the auxiliary problems 
should have the same symmetry as the complete 
problem, in particular-symmetry with respect 
to the helicity inversion operation. To this end it 
is necessary to regard as different from zero all 
the parameters which go over into each other 
under this operation. Thus, for particles with 
spins ( 0, t;2 ) the number of phase shifts should 
be even, and for the scattering of two identical 
particles with spin 1/ 2 the parameters Oj-1,j, Oj, 

and Oj+ 1,j should be included simultaneously. 
We shall show that in each of the three cases 

under consideration the auxiliary problem, for 
arbitrary n satisfying the limitation indicated 
above, has exactly two solutions, which go over 
into each other under helicity inversion. From 
this it follows, in particular, that the more rea­
listie "necessary experiment" [5, 6] for arbitrary 
n has actually not more than a two -valued inter­
pretation. We shall then proceed to the limit as 
n--+oo. 

3. METHODS OF PROVING TWO-VALUEDNESS 

For particles without spin, the proof of the two­
valuedness of the solution of the system of 2n - 1 
equations with n unknown phases can be obtained 
by considering the algorithm of its successive so­
lution, starting with the equation containing the 
coefficient of the highest polynomial of degree L 
= n -1. Solving successively the last n equations, 
we obtain 2n solutions. Using the remaining n -1 
equations, we can show that each of these decreases 
the number of solutions by not less than one-half, 
after which there remain only two solutions with 
oz1 = oz0 and oz2 = - oz0• For particles with spins 

( 0,% ), an analogous algorithm gives 2n/2 solu­
tions, compatible with the last n/2 pairs of equa­
tions, and the use of the remaining equations de­
creases the number of solutions to 2, with of1 = of0 

E E 
and 6j 2 = - Ojo· 

We shall not derive this proof in detail because, 
first, we shall present below a much simpler proof 
(which, to be sure, does not give the algorithm for 
solving the system); second, the algorithm for the 
successive solution of the system, starting with 
large L, is not convenient from the computation 
point of view when experimental errors are taken 
into account; third, for spin 1/ 2 particles such an 
analysis leads not to quadratic equations, but to equa­
tions of the eighth degree, the investigation of 
which is a very complicated matter. 

To prove the two-valuedness of the solution of 
the systems of equations under consideration, we 
can use previously obtained results [s J, where the 
number of solutions of a system of n equations 
of the type in question, with n unknowns, coincides 
with the number of solutions of a simplified sys­
tern, obtained from the initial system by assuming 
all the parameters contained in it to be very small, 
and by retaining only the lowest nonvanishing pow­
ers of these parameters. More accurately, the so­
lutions of the simplified system correspond to the 
solutions of the complete system, which vanish 
when the initial solution vanishes. However, if 
the unknown quantities include the total cross sec­
tion expressed in the form of the sum of the square 
of the moduli of such functions of all the param­
eters, which vanish together with them, then the 
complete system cannot have any other solutions, 
and the investigation of the simplified system 
yields the total number of solutions. 

Thus, for each spin combination, it is sufficient 
to consider a successive solution of the simplified 
system, and to obtain the number of solutions that 
vanish simultaneously with the initial solutions. In 
addition, the coefficient of the square of each of 
the parameters of the initial solution in the expres­
sion for the total cross section, obtained during 
each stage of the solution of the system, cannot ex­
ceed the corresponding coefficient for the initial 
solution, since all the terms of the total cross sec­
tion are positive and too large a coefficient cannot 
be offset in any way during the succeeding stages 
of the system solution. 

4. SPINLESS PARTICLES 

The expression for the scattering amplitude is 
well known [see, for example, the book by Landau 
and Lifshitz [B], formula (122.10)]. The system of 
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2n -1 equations with n phases, the number of so­
lutions of which is to be determined, is of the form 

n-1 ([ [' L)2 
~- (2l + 1) (2l' + 1) 0 0 0 

l, l-0 

(4.1) 

where (2L + 1 )k-2 AL are the coefficients of the 
expansion of u( ()) in terms of Pz (cos () ) . 

Applying the method of simplified equations to 
the system (4.1), we find that the last equation 
( L = 2n- 2) is quadratic in On_1 and has two so­
lutions, on-1, 1 = On-1, 0 and on-1, 2 = - On-1, 0, and 
that the succeeding n -1 equations are linear with 
respect to the new phase shifts. Consequently, we 
conclude immediately that the system (4.1) has 
only two solutions. 

5. PARTICLES WITH SPINS (0, Y2 ) 

The scattering matrix is given in the cited 
book[8] [formulas (138.4) and (138.5)]. 1l The 
investigated system of equations with n phase 
shifts ( n even) is written in the form 

(n-1)/2 

~ (2j+1)(2j'+1) ~ (2Z+1)(2l'+1) 
i. 5'=1/z E, E'=±l 

( l l' 
X 0 0 

L)2{j 
0 l' 

. .. -• . .. -·· -• .. -·· A + sm u; sm uy cos (6; - uy )} = L, 

(n-1)/2 

~ (2j+1)(2i'+1) ~ (2l+1)(2l'+1) 

X (l l' 
0 0 

E, E'=±l 

X {sin 6/ sino/ sin (6/- o/) 

-sin o;-• sin or_,. sin (6;-•- oy_,.)} = BL, 

(5.1) 

(5.2) 

where Y4 (2L + 1)k-2AL and k-2[3(2L + 1)3/ 

2L(L + 1)] 112 BL are the coefficients of expansion 
of u(e) in terms of PL(cos ()) and of u(())P(()) 

in terms of Pt (cos 8 ), while the phase shifts of 
correspond to states with total angular momentum 
j and parity E. 

The last two equations of (5.1) and (5.2) (with 
L = n -1) assume for small phase shifts with an­
gular momentum J = (n -1 )/2 the form 

!)There is a misprint in [•]: there is no need fori in the 
denominator for the coefficient B. 

oJ+{jJ- = 6Jo+oJo-, oJ+{jJ-({jJ+- {jJ -) 

= o,o+6Jo-(0Jo+- 0Jo--) (5.3) 
. E E E E 

and have two solut10ns: OJt = OJo and OJ2 = - OJo· 
The pair of equations determining the phase 

shifts of the state with angular momentum j from 
the phase shifts with angular momentum J are of 
the form 

6;+6J+ + 6r6J- = o;o+fJJ+ + 6;o-oJ-, 
fJ;+fJJ+(o;+- fJJ+) - 6ror(6;-- 6J-) 

= 6;o+fJJ+ ( 6;o+ - fJJ+) - 6;o-6J-( 6;o- - f:!J -). (5 .4) 

One of the solutions of the system (5.4) coincides 
with the initial solution, while the second is use­
less since it does not vanish when oJo = ojo = 0, 
except for the case oJ- = - oj, when the two solu­
tions of the system (5.3) coincide; in the latter 

+ - - + 
case 6j 2 = - 6j 0 and Oj 2 = - Ojo· Therefore during 
each stage of the successive solution of the sys­
tern the number of its solutions does not increase, 
and we conclude that the system (5.1) and (5.2) has 
two solutions. The case of odd n is obtained from 

+ 
that considered here by imposing the condition 6 J 
= 0 (or OJ = 0 ) ; consequently, in this case the 
solution is unique (except for n = 1, when P = 0 ). 

6. IDENTICAL PARTICLES WITH SPIN Y2 

The scattering amplitude of two identical par­
ticles with spin Y2 is given in several papers (see, 
for example, [G,BJ). The complete system of equa­
tions for the determination of the scattering-matrix 
parameters when the angular distributions of the 
normal complete experiment are known is quite 
cumbersome. We therefore proceed immediately 
to the simplified equations. The system that con­
tains the parameters of the state with the highest 
total angular momentum J participating in the 
scattering can be written in the form 

(ui- VJWJ) (vJ- WJ + uJ I (J (J + 1)) '!.) 

= (uJo2 - VJoWJo) (vJo- WJo + UJo I (J(J + 1))'1•), 
(6.1) 

(wJ + 2(J(J + 1))'f2uJ)2 = (wJo + 2(J(J + 1))'12uJo)2, 
(6.2) 

(6.3) 

(6.4) 

YJ((J -i)XJ-1 + VJ + {J I J + 1))wJ- 2uJ(J I (J + 1))'1.] 

= YJo[ (J -1)xJ-I,O + VJo +(!I(!+ 1))wJo 

- 2uJo(l I (J + 1))'1•], (6.5) 

where the unknown quantities are expressed in 
terms of the elements of the unitary matrix S~z 
in the following fashion: 
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2ixJ-1 = s~=~: ~-1 -1, 2iyJ = s~~ -1, 

2 S 11 1 2 · s'1 1 2 · s'1 iVJ = J-1, J-1 - 1 ZWJ = J+l, J+l- 1 ZUJ = J+l, J-1• 

The system (6.1)-(6.3) has, in addition to the 
initial solution, three solutions, in which VJ, WJ, 
and UJ are expressed linearly in terms of VJo, 
w Jo• and UJo with the aid of the matrices 

( 
-1 

U2=-1- -4t 1+ 4t .. r 
2 r t 

-2 (1 + 2t) !Vt) 
-4Vt , 
3 + 4t 

- (1 + 2t)2 1 t 
-1 

(1 + 2t) tYT 
(6.6) 

( 
-1 

U3 = 1~4 -4t + t -.,r-2 r t 

4 YT ) 
-4 YT , 
1-4t 

(6. 7) 

-4t 
-1 

-2 YT 

1ft 2f'Vt ) 
1 0 ' 

-1 -1 ;YT 
(6.8) 

where t=J(J+1). Ontheotherhand, VJ,WJ, and 
UJ are contained in the total scattering cross sec­
tion in the form of the combination v} + w} + 2u}. 
From (6. 7) we find that 

whereas for the second and fourth solution w}0 

enters into this sum with a factor ( 1 + 1/ J ( J + 1) )2 

>1. 
Equation (6.4) has two solutions, each of which 

leads, in combination with the initial solution or 
with (6. 7) with the aid of (6.5), to XJ _1,1 = XJ -1,o 
and XJ _1,3 = -XJ _1, 0, respectively. The other two 
solutions drop out, since they contain in the ex­
pressions for XJ _1 terms that are proportional to 
v J 0, w J 0, and UJ 0, in contradiction to the total cross 
section. If u~0 - v JoW Jo = 0, then (6.1) is replaced 
by 

(vJ + WJ)~(VJ- WJ + (vJWJ)'I•f (!(/ + 1))'1•) 
= (vJo + WJo)~(VJo- WJo + (vJoWJo)'f, / (J(J + 1) )''•), 

which together with (6.2) and (6.3) leads likewise 
to only two solutions: the initial one and (6. 7), com­
patible with the requirement v} + w} + 2u} 
:$ (VJo + WJ0 ) 2• If YJo = 0, then it is necessary to 
consider in place of (6.5) the equation 

[ J I J )'/,]2 
(J-1)XJ-l+vJ+ J+ 1 WJ-2UJ~J+ 1 

=[ (J -1) xJ-1. o + vJo +, ~ 1 WJo- 2uJo(, ~ 1 )"'f. 
which leads to the same results for XJ _1. We see 
that for the parameters of the state with the high­
est angular momentum there are only two solutions 

and, as indicated earlier [ 10], the initial solution 
goes over into (6. 7) under helicity inversion. 

The system of equations for the determination 
of the parameters of the state with angular mo­
mentum j from the parameters with the maximum 
angular momentum J can be written in the form 

J (2j + 1 )2 ( UJ ) 
J+1 VJ-WJ+(J(J+1))'1• 

X ( UJ2 + WJ (WJ - Vjo- Wjo)) J = Q, (6.9) 

(wJ + '2(/(J + 1))'i•uJ) (w; + 2(j(j + 1))''•u;- w;o 

+ 2(j(j + 1))'"u;0) = 0, (6.10) 

j (2J + 1 )2 J (2j + 1 )2 

J + 1 WJ (v;- v;0) + j + 1 VJ (w;- w;0) 

2j (2J + 1) (J- j) 
+ (J + 1) (j (j + 1))'/, WJ (u;- u;0) 

2J (2j + 1) (j- J) 
+ (j + 1) (J (J + 1)),1' UJ (w;- w;0) 

2(2i+1H2J+1)V/] < ) 
- [(j + 1) (J + 1)]';, UJ u;- u;0 

(J- j)2 
+ (j + 1) (J + 1) WJ (w;- w;0) = 0, 

YJ (Y;- Y;0) = 0, 

(2J + 1) YJ [ (j -1) (xi-1- Xj-1, o) + v;- Vjo 

+ j ~ 1 (w; -W;o) -2 ( j ~ t)'1'(u;- u;0) J 

+ (2j + 1)(y1 - y10 ) [ (J -1) XJ-1 + VJ 

J ( J )'/. J + J + 1 WJ - 2 J + 1 UJ = 0. 

(6.11) 

(6.12) 

(6.13) 

The system (6.9)-(6.11) has two solutions: the 
initial solution and a solution that does not vanish 
for zero initial solution. Then the equations (6.12) 
and (6.13) have likewise only the initial solution. 
When WJ + 2(J(J+1))112 uJ:::: 0 there appears in 
place of (6.10) the equation 

(w; + 2(j(j + 1))'i•u;) 2 = (WJo + 2(j(j + 1))'"ujo)2, 

which leads in conjunction with (6.9) and (6.11) to 
four solutions, two of which were mentioned ear­
lier. The third vanishes together with the initial 

\ 
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solution, but leads in the sum vj + wj + 2uj to a 
coefficient ( 1 + 1/j( j + 1) )2 > 1 for wj0• The fourth 
solution vanishes when the initial solution vanishes 
only under the supplementary condition v J 
= 2(J(J+1)) 112 uJ, when (6.7) coincides with the 
initial solution; in this case the fourth solution of 
the system is written in the form (6. 7) in which J 
is replaced by j, and coincides with one of the so­
lutions of this system, obtained after substituting 
(6. 7) in it in place of the initial solution. 

Consequently, an analysis of the scattering of 
spin 1/ 2 particles has for arbitrary n = 5m + 2 only 
two solutions, of which one goes over into the other 
under helicity inversion. When n = 5m + 3 (when 
VJo = WJo = UJo = YJo = 0 ), there are also two so­
lutions, and when n = 5m + 4, n = 5m + 5, and 
n = 5m + 1 there is only one solution (the states 
are taken in natural order ) . 

7. TRANSITION TO THE LIMIT 

Let us now lift the requirement that the number 
of parameters n be finite. We assume here that 
the unitary scattering matrices can be represented 
in the form of the product 

S = Sa.Sfl, (7 .1) 

where the matrices s13 are known, and the elements 
of the matrices Sa satisfy the conditions of uniform 
and absolute convergence. In particular, for par­
ticles with spins ( 0, 0) and ( 0, v2) this means that 
the phases are regarded as consisting of two terms: 

(7.2) 

where the phase shifts /3z are known, and the phase 
shifts f3z decrease with increasing l more rapidly 
than z-2• The latter, as is well known, occurs if 
the corresponding potential decreases more rap­
idly than r-3 as r-oo. The phase shifts f3z can 
decrease slowly or may even increase logarith­
mically, if they are due to electromagnetic inter­
action, but the amplitudes corresponding to these 
slowly-decreasing terms can be summed exactly. 
After such a partial summation we can assume 
that the series contained in the amplitude converge 
absolutely and uniformly. 

In the case of a transition to the limit as n - oo , 
depending on the behavior of f3z at large values of 
the angular momentum, two cases can be encoun­
tered. If the f3z decrease so rapidly that the al­
ready-mentioned conditions for them are satisfied, 
as is the case, for example, for the nucleon scat­
tering parameters in the one -meson -exchange 
model, then both sequences of amplitudes obtained 
in the auxiliary problems converge uniformly to 

two different solutions of the initial problem. On 
the other hand, if the f3z decrease slowly or do not 
decrease, then the solution is made up by the limit 
of only that sequence for which the correct solu­
tion of the auxiliary problems is chosen, for ex­
ample, the correct sign of the phase shifts, for 
only in this case does separation of the summed 
amplitude of the long-range forces ensure uniform 
convergence of the series. Therefore the problem 
of the scattering analysis has a unique solution in 
the second case. 

Taking account now of the errors in the experi­
mental data, we can state that when the measure­
ments are sufficiently accurate the depth of one 
(or two ) among all the minima of the x2 sum be­
comes considerably larger than the remaining 
ones, and approaches the number of degrees of 
freedom, and the probability that such a random 
sequence of measurements is compatible with any 
other (third) solution tends to zero. 

The depths of the two principal minima can be 
different not only because of the influence of the 
long-range forces, but also when account is taken 
of relativistic corrections to the expressions for 
the observed effects in terms of the scattering 
amplitude. These corrections, as indicated in [10 ], 

violate the invariance of the expressions under 
helicity inversion (this pertains only to experi­
ments outside the normal complete experiment). 
Of course, the equivalence of the two solutions of 
the problem is lost if in some of the experiments 
the magnetic field is used for spin flip, or the tar­
gets have polarizing or analyzing properties that 
are known beforehand (including the sign of the 
polarization). 

Summarizing and recalling that a correctly in­
terpreted complete experiment satisfies the com­
patibility conditions automatically, we can con­
elude that if the influence of the long-range forces 
is sufficiently strong and the properties of the 
polarizers and analyzers are known the normal 
complete experiment at a single energy is com­
plete for all three spin combinations considered 
here. On the other hand, if knowledge of the elec­
tromagnetic forces and properties of the targets 
cannot be used, then only the observation of the 
scattering cross section of spinless particles is 
complete, for in the case of interactions of par­
ticles with spins the two-valuedness can be elimi­
nated by introducing a magnetic field. No account 
is taken here of the additional information which 
can be obtained from the dispersion relations and 
from a study of the energy dependence of the scat­
tering parameters if the volume of the experimen­
tal material is sufficiently large. 
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We have taken the limit as n - oo under the as­
sumption that all but the first n parameters are 
equal to zero, since such a method of taking the 
limit is convenient to prove duality at n = oo • In 
practice, however, the analysis is frequently car­
ried out with a finite number n of the varied pa­
rameters oq and with an infinite number of pa­
rameters f3l determined from some likely phys­
ical model of the interaction. If the experiment 
under consideration does not include fewer points 
than the corresponding necessary experiment, then 
it follows from our analysis that the scattering 
matrix is determined for this case uniquely, as a 
result of which the depths of two principal minima 
for each sufficiently large n and for sufficiently 
small errors of the points are completely differ­
ent, even if the series with the specified par am­
eters converge uniformly and absolutely. In addi­
tion, the parameters obtained from the principal 
minimum are much less sensitive to the choice of 
n than for the remaining solutions. 
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