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We construct a theory for the anomalous skin effect in thin cylindrical conductors the radius of 
curvature of the surface of which is much smaller than the electron mean free path, assuming a 
quadratic dispersion law for the electrons in the metal. We find a strong dependence of the surface 
impedance on the way the electrons are scattered from the surface. When the electrons are re­
flected specularly from the surface of the conductor an essentially new dependence of the surface 
impedance on the frequency, the radius of the cylinder and the mean free path of the electrons ap­
pears. 

1. INTRODUCTION 

IN connection with the wide use of pure metals for 
which the mean free path of the electrons is large com­
pared with the dimensions of the sample it is of con­
siderable interest to evaluate the surface impedance of 
thin cylindrical conductors. 

In the present paper, assuming a quadratic disper­
sion law for the electrons in the metal, we find a gen­
eral expression for the current density in a cylindrical 
conductor for an- arbitrary value of the coefficient p of 
specular reflection of the electrons from the surface. 
Assuming that the electron mean free path is large 
compared with the radius we find an equation for the 
field in the cylinder. We consider in detail the limiting 
cases when the scattering of the electrons is basically 
through collisions with the surface (non-specular re­
flection) and when the electrons are scattered by im­
purities (specular reflection from the surface). 

It turned out that in the first case the surface im­
pedance of a cylindrical conductor depends in an es­
sential way on the way electrons are scattered by the 
surface and is independent of the radius of the cylinder. 
The dependence of the surface impedance on the fre­
quency of the external field is now exactly the same as 
for samples with a plane surface. 

If the electrons are specularly reflected from the 
surface of the cylinder, a peculiar situation arises 
which is connected with the fact that even when the 
electron mean free path is large compared to the 
radius, the scattering of the electrons is by impurities. 
This leads to an essentially new dependence of the sur­
face impedance on the frequency, the radius of the 
cylinder, and the mean free path. 

In what follows we shall use the classical kinetic 
equation for the electrons in the metal to solve the 
problem. The largest error which is introduced in this 
way is connected with the neglect of the so-called sur­
face levels. For the case where there is no magnetic 
field PrangeP1 has considered these levels (see alsoC 2l). 
To obtain an estimate of the region of applicability of 
the following formulae we shall first of all briefly con­
sider the properties of surface levels. 

2. QUANTUM SURFACE LEVELS 

We consider the quantum states of electrons in a 
cylindrical sample with specularly reflecting walls 
corresponding to large centrifugal angular momenta. 
For the sake of simplicity we restrict ourselves to the 
free electron model with a quadratic dispersion law 
and we write down the solution of the Schrodinger equa­
tion 

2mE 
v'!/1 + 1i2'~~' = o, 

which satisfies the boundary condition 

Wlr=R = 0, 

in the form 

(2 .1) 

(2.2) 

¢n, M, P,(r,q:,z) = Cn,M, P,expfp~z + iMq: }1M( ~ 11~l). (2.3) 

Here JM(x) is a Bessel function, /-L~M) the n-th root of 
the equation JM(x) = 0, and m the effective mass of the 
electron. We find the following expression for the en­
ergy spectrum of the electrons 

P 2 ft2 
E =-'-+--[ (M)l" 

n 2m 2mR2 f.tn · 
(2 .4) 

When the skin effect is present the electrons which 
spend a long time in the skin-layer give the main con­
tribution to the conductivity. Those electrons corre­
spond to a large classical centrifugal angular momen­
tum 

mvoR 
M~-h->1, (2.5) 

where v0 is the Fermi velocity. Using the well-known 
asymptotic expression for the Bessel function we can 
show that Eq. (2.4) for the electron energy spectrum 
for M >> 1 and n ~ 1 has the form 

p," h•M' h2M'!. (2 6) 
En = 2m + 2mR• + 2-'l• mR• an, • 

where an is the n-th root of the equation ~( -x) 
= O(~(x) is the Airy functionC 3l). One sees easily that 
the electron energy spectrum (2.6) has the same form 
as the electron energy spectrum in a plane conductor 
when there is a magnetic field present and that the 
radius of curvature of the cylinder plays the same role 
as the Larmor radius. 
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The electrons may make transitions from one sur­
face state to another under the influence of a high­
frequency field. We get for the transition frequency 
from level m to level n: 

(2 .7) 

As a rule, the resonance character of the transitions 
between surface levels leads to an oscillating depend­
ence of the surface impedance on the frequency w of 
the external field. We can neglect the influence of the 
surface levels on the conductivity if the energy of the 
quanta of the high-frequency field is appreciably 
smaller than the energy of the first quantum level. 
This condition under which we can evaluate the surface 
impedance in the framework of the classical theory has 
the form 

roR/v0 <Sl';M'"· (2.8) 
Of course, all we have stated is valid only provided 

the reflection of the electrons from the surface is 
close to specular. As the scattering of the electrons by 
the surface becomes more diffuse, the surface levels 
will become more smeared out. 

3. SOLUTION OF THE KINETIC EQUATION 

Let there be a relatively long metallic cylinder of 
radius R with its axis along the z-axis in an axially 
symmetric high-frequency field whose electric vector 
E is along the axis of the cylinder and depends only on 
the distance r from the axis. The equation for the 
electric field has the form 

2 E + ro2 E 4niro . 
ti C2 = --cz ]. (3 .1) 

To find still another equation which connects the cur­
rent density j with the field we must solve the kinetic 
equation which we linearize in the field E and write in 
a cylindrical system of coordinates :[41 

( 1 ) 8ft v~2 8ft v,v., 81! 8fo (3 2) 
iro+- lt+v,-+-----=e-v,E,. • 

't ar r av, r 8v., 0£ 

Here f0 = {1 + exp[(€- €0 )/T]}-1 is the equilibrium 
electron Fermi distribution function, f1 the correction 
to the equilibrium distribution function taking the in­
fluence of the external field into account, € = Y2 mv2, 

Eo= Y2 mv~ is the Fermi energy, and T the relaxation 
time. We shall assume the electron gas to be degener­
ate in Sees. 4 and 8 and we write the collision integral 
in the relaxation time approximation. 

To solve the problem it is convenient to introduce 
instead of f1 two functions f+ and L which describe 
electrons moving away from and towards the center of 
the cylinder: 

l e ::0 f+, v, > 0; 

ft = 81o 
eTe 1-. v, < 0. 

(3.3) 

The distribution function must be continuous at vr = 0: 

f+l.,~o = /-l•,~o. 

The boundary conditions for the functions f± at the 
cylinder surface have the form: 

(3.4) 

Here p is the coefficient of specular reflection of the 
electrons from the surface, introduced by Reuter and 
Sondheimer _(SJll The equations for the functions f± 
have the form 

(iro+1/'t)!±±lvr18af±± v.,2 8811±1 =F lvrlv.,a8f±=v,E,. (3.5) 
r r Vr r Vq~ 

Introducing a spherical system of coordinates in 
velocity space 

v, = v sine cos lp, v., = v sine sin q>, v, = v cos e (3.6) 

and writing 

(3.7) 

we find the solution of Eqs. (3.5) with the boundary con­
ditions (3.4) in the form 

I ctgfJexp[-<l>(r,r)] { sl< ' s· + = e-<P<r o'l! + .e4>(r',r) 

i-pexpL-~Q.I(lt,r)J rlslnq>l rlslnq>l 

l! }[ r 2]-1
/2 (3 8) X pe-240(R,r) ~ e4>(r',r) 1-( -;:;sin~p) E,(r')dr'; • 

r 

f- = ctg 9 exp [<l>(r, r)] {pe-2<P(R,r!)[ s e-4>(r',r) + 1 e<P<r',r)] 
1 - P exp [- 2<1> (R, r)] rlsln 'I> I rlsln 'I> I 

R 

X s e-4><r',r! }[ 1- ( ?-sinq> rri· E,(r')dr'. (3.9) 
r 

For the current density in the conductor we get the 
following expression 

2 2 3 .. of " n/2 

j,=- e; s-0 v3dvScosasin6d6 s U++l-]dq:, (3.10) 
h o 0£ o -n/2 

which as R-oo gives the well-known result obtained 
by Reuter and Sondheimer[s] in the theory of the ano­
malous skin-effect in a plane sample. 

4. SURFACE IMPEDANCE OF A THIN CYLINDER 
WITH NON-SPECULAR WALLS 

In the case of interest to us where the mean free 
path of the electrons is large compared to the cylinder 
radius we have the inequality 

lsi <S1'; 1, (4.1) 

where ~ = R(iw + 1/r)/v0 • We shall in the present sec­
tion also assume that the coefficient of specular reflec­
tion p of the electrons from the surface of the cylinder 
is not too close to unity so that 

(4.2) 

The opposite limiting case when 1 - p « I ~ I is con­
sidered in Sees. 5-7. In the region (4.1) when (4.2) 
holds Eqs. (3.8) and (3.9) can be simplified so that 

I++!-= 2 ~ ~ P ctg e ~ [ 1- (;, sinq> rr· E,(r')dr'. (4.3) 
p rlslnq>l 

It is clear from Eq. (4.3) that the electron distribution 
function under our assumptions is independent of the 
relaxation time and the choice of the form of the colli­
sion integral in the kinetic equation is thus immaterial. 

1lGenerally speaking, one must assume the coefficient p to be a 
function of the angle of incidence (see, e.g., [6 ]). For the sake of sim­
plicity we shall, however, assume p to be constant. 
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Using the well-known relation for elliptical inte-
grals:r7r -

( 2yk ) 
(i+k)K(k)=K 1+k, (4.4) 

1/211 

where K(k) = j [1 - k2 sin2q~ r112 dq~ is the complete 
0 

elliptical integral of the first kind, we find the following 
expression for the current density in a thin cylinder; 

j,(r)= 411e2m2vcf 1 + p ~ E,(r)K I 2frr' ) r dr . (4 .5) 
h" 1-p 0 r+r' r+r 

Neglecting in the wave equation (3.1) the displace­
ment current in comparison with the conduction cur­
rent we are led to the following equation for the field 
in the cylinder: 

B -

~__t!__(rdE,(r)]=~1+p ko•S E,(r)ul 2i+~) r'+dr.J •(4 6) 
r dr dr n 1-p 0 \ r ,. r r • 

where 
(4.7) 

60 =k~1 is the penetration depth of the field into the 
metal in the theory of the anomalous skin effect.rsJ 
Equation (4.6} describes the penetration of the field 
into the cylinder for an arbitrary ratio of the radius 
of curvature to the thickness of the skin-layer. Using 
the formula [7J 

2irr .. (r+r)-1K(--)=~S lo(kr)ln,(kr)dk, (4.8} 
r+r 2 0 

we can write Eq. (4.6) also in the form 
B oo 

~~ [r dE,(r) ] = iko• 1 + P S E,(r)rdr S lo(kr)lo(kr)dk. 
r dr dr 1-p 0 o (4.9) 

If the penetration depth of the field into the cylinder 
is appreciably larger than its radius, i.e., when 
k0 R(1- pt113 « 1 it is convenient to solve Eq. (4.9} 
by the method of successive approximations. Putting in 
the first approximation Ez(r') =Ez(R) we find 

T B oo 

rEz'(r) = iko" 1 + P E,(R) S r1dr1 S rdd lo(kri)lo(kr)dk, (4.10) 
1-p 0 0 0 

whence 
1+ .. dk 

Ez'(R)/E,(R)=iko3R2 1_; ~l12(k) ~· (4.11) 

The integral in (4 .11) is equal to 4/311 so that 
4t t+p 

E.' (R) /E,(R) = an ko"R2 1 _ p • (4 .12) 

For the surface impedance 21 in the region koR( 1 - pt1/ 3 

« 1 we find the expression 

Z=4niooE,(R)=3n2 1-p. ft8 (4.13) 
c• Ez'(R) 1 + p (mevoR) 2 

In the opposite limiting case koR ( 1 - p t 113 » 1 when 
the penetration depth of the field into the cylinder is 
small compared to the radius only a small region near 
the surface is important. Putting 

r =R- Op, r = R- Op', 0 = llo( 1
1+-Pp )''•, 

(4.14) 
E,(R-Op)=/(p), 

2lThe usual resistivity tH of a conductor of length land radius R is 
connected with the surface impedance Z through the formula tH = 
lZ/27rR. 

and using the following asymptotic form of the elliptical 
integral :171 

K(k)=ln :,+o(k'2 lnk'), k'=i1-k2, (4.15) 

and extending the integration over p' to oo we get the 
equation 

f'(p)=..!:.. .. St<p')ln sn;o dp'. 
It 0 lp-p'l (4.16} 

Continuing the function f(p) to the region p < 0 such 
that it is an even function and changing in Eq. (4.16) to 
Fourier components, 

F(k)=2 St(p)coskpdp, (4.17) 

we get for F(k) the equation 

2" .. 
(k•+ i/k)F(k)-....!. SF(k') w. 

In k/k' dk' =- 2f(+O). (4.18) 
k2- k'2 

An equation of the type ( 4.18) was obtained by 
Azbel' and KanerrsJ and solved by Hartmann and 
Luttinger.reJ Using the results of[eJ we find the surface 
impedance of the cylinder in the form 

Z=- 4iooll s•F(k)dk=Z(1-p)''• ll<!~i;R(4.19) 
c2f(+O) 0 ° 1+p ' ' 

where Z0 = 2 {3 11wei1113/c~0 is the surface impedance 
of a plane metallic sample with a diffuse surface. 

The surface impedance for the case of the strongly 
anomalous skin-effect in region (4.2) is thus independ­
ent of the radius of the cylinder and hence of the form 
of the cross section of the conductor. This should have 
been expected as the radius of the cylinder under con­
dition (4.1) plays the role of a mean free path and for 
the strongly anomalous skin effect the surface imped­
ance is independent of the mean free path. We note 
that the surface impedance of thin cylindrical conduc­
tors depends in an essential way on the way the elec­
trons are scattered by the surface. 

5. EQUATION FOR THE FIELD IN A THIN CYLINDER 
WITH A SPECULAR SURFACE 

When the reflection of the electrons from the surface 
of the cylinder is specular, i.e., under the condition 

t-p<!li; lsi. (5.1) 

the scattering of the electrons is basically by impuri­
ties. We shall consider this case also on the basis of 
condition (4.1). In Sees. 5-7 we shall not assume that 
the electron gas is degenerate so that the final results 
will be valid for any temperature of the electron gas. 
Using conditions (4.1) and (5.1) the general expression 
(3.10) for the current density in the cylinder can be 
written in the form 

oo n n/2 

8(1+p)e2m•sat. S S j, =- 3 -v3 dv cos2 e de [1- p +2pll>(R, r)]-1 dq> 
h o as o o 

(5.2) 
R r 2. -'I• X S [1-(-7 sin<p) J E,(r)dr. 

r sin cp 

Assuming, in accordance with condition (5.1) that 
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p = 1 and also noting that for a Fermi distribution (see, 
e.g., (wJ) 

"" [)j S __.!_ v4 dv = - 3NnNP/m', 
0 as 

where N is the electron concentration, we get the 
following expression for the current density 

2 ~N 1 .nf2 r -'t. 
j,= n m R(iw+Vr)} [1-(Rsinq;)J dq; (5.3) 

0 

R . r 2 -lf2 

X S [t-(7sin<p) J E,(r')dr'o 
r sin·~ 

Substituting Eq. (5.3) for the current density into the 
wave equation (3.1 ), neglecting the displacement cur­
rent in comparison with the conduction current, and 
expressing the electron concentration in terms of the 
plasma frequency 

N = mwo2 I 4ne2 , (5.4) 

we find after some transformations the following equa­
tion for the field in the conductor: 

!_rr dE,(r) l= 2i 0 wwo' s E,(r')'!l(r/R,r'/R)dr'o {5.5) 
dr dr n c2(1w + 1/'r) 0 

The kernel of Eq. (5.5) can be expressed in terms of 
the complete elliptical integral of the first kind as 
follows: 

xy [ 2 (xyl'1 - x2 l'1- y2) 'f, J 
'!l(x,y)= K o{5 6) 

xl'1- y' + yl'1- x2 xl'1- y2 + yl'1- x2 ' 

Changing for the sake of convenience of the further 
discussion to dimensionless quantities: 

x = r/ R, y = r' I R, f(x) = E,(Rx) I E,(R), 

s= ( (J)~ r 1 (1 + 1/iwr), 
(5.7) 

we write Eq. (5.5) in the form 

' 
~ [ x dfd;) ]= ! 1;~ f(y)'!J(x,y)dyo (5.8) 

Using Eq. (4.8) we find easily the following integral 
representation for the kernel (5.6 ): 

n r ( l'1 - x2 ) ( l'i - y' )' ( 9) '!l(x,y)=z
0
Jlo k--x- 10\k--y- dk. 5. 

Using the representation (5 .9) and also the formulaef 7 l 

(5.10) 

(5.11) 

we find the following identity 
I 

/'(1)= s s f(y)ydyo (5 .12) 

The integra-differential equation (5.8) is equivalent to 
the following Fredholm integral equation: 

1 

f(x)+ s S f(y)G(x,y)dy = 1, (5.13) 

whose kernel has the form 

The only parameter, /;, which occurs in Eq. (5.13) 
is determined by the ratio of the penetration depth of 
the field into the cylinder to its radius. If the field 
freely penetrates into the cylinder, /; « 1. In the op­
posite case of a strong skin-effect, /; >> 1. 

6. SURFACE IMPEDANCE OF A CYLINDER WITH A 
SPECULAR SURFACE 

To evaluate the surface impedance it is unnecessary 
to find the exact solution of (5.13), but it is sufficient to 
find only f' ( 1 ): 

Z = 4niw E,(R) 
c2 Ez' (R) 

4:riiwR {/'( 1) 1_, 
c' 

(6.1) 

We shall write f' (1) as the ratio of determinants of 
infinite order. We introduce the notation 

' In == S /{!/) yzn-i dy, n = 1, 2, o .. 0 (6.2) 
0 

In accordance with the identity (5.12), 

/'(1) = S/Jo {6.3) 

Multiplying Eq. (5.13) by x 2 n-1 and integrating from 
zero to unity we get 

' In+ s S f(y)gn(y)dy = 1/2n, (6.4) 

where 
' 

gn(Y) = s xZn-1 G(x, y)dxo 
0 

{6.5) 

Substituting (5.14) into {6.5) we get after simple trans­
formations 

1 f ( )'1 - y' ) "( udu 
gn(Y)= 4n' J lo k--y- dk .)lo(ku)[1-1/(1+u')n] (i+u')'" o 

0 0 (6.6) 
Moreover applying the obvious identity 

f('/) an 
(a+u')-n-'h=(-f)n 2 (a+u2)-'f, {6.7) 

f(n+ 3/ 2)[)an ' 

using Eqs. (5.10) and (5.11) to integrate, and using 
Leibnitz's formula for the n-th derivative of a product 
we find gn ( y) in the form 

1 { f(n+i) n~ f(s- 1/z)f(n-s+'/z) } 
lfn(Y) =- Y LJ yzs-l 

4n2 2}'nf(n+ 3/ 2 ) _ f(s)f(n-s+2) 
s-1 {6.8) 

Here r ( x) is the gamma function. Substituting {6.8) 
into {6.4) we find the following infinite set of equations 
for the In: 

n+l 

~{.Sns+a,.,}I,=1/2n, n=102,oo•• {6.9) 
8=1 

where Ons is the Kronecker symbol, and 

s { f(n+1)f(s-'/z)f(n-s+ 3/2)} 
ans= 4n' 61'- 2}'nf(n+ 3/z)f(s)f(n-s+2) 0 (6.10) 

We show that the set (6.9) is normal, i.e., that the 
series 

(6.11) 
11,8=1 
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converges. Indeed, when s = 1 the series over n is 
bounded: 

00 ~001 ~ 
~land <-~-=-~(2)o 
4.1 4 n2 4 

n=i n=i 
(6.12) 

Here l;'(x) is Riemann's zeta function. Using the obvi­
ous inequality 

r(s-1f2)r(n-s+•M < r(s)r(n-s+2), (6.13) 

we can majorize the series (6.11) for s > 1 by the 
series 

~-~ r(n) 
8)'n n=l(n + 3/z) 

(6.14) 

the convergence of which can easily be established, 
e.g., using Raabe's testY1l 

It is well known[ 12l that there exists for a normal 
infinite system a determinant ~ of infinite order which 
can be evaluated as the limit (as the number of rows 
and columns tends to infinity) of a sequence of deter­
minants of finite order. There also exists a determin­
ant ~s which is obtained from ~ by replacing the s-th 
column by the numbers 1/2n. We can thus find the 
solution of the set (6.9) by Cramer's rule: 

I, = t., It., s = 1. 2, 0 0 0 0 (6.15) 

We get for the surface impedance the following expres-
sion: 

(6.16) 

If l;' « 1, when the radius of the cylinder is small com­
pared to the penetration depth of the field into the metal, 
only the diagonal elements are important in the deter­
minants ~ and ~ 1 so that ~ = 1, ~ 1 = % and the sur­
face impedance~ equal to 

Zo = ~ (iw + 1/t)o (6.17) 
wo2R 

Owing to the fact that the ans tend rather fast to 
zero as n and s increase we can in the range l;' ~ 1 
limit ourselves to second order determinants. We give 
in the figure the l;' -dependence of the surface imped­
ance for l;' :s 10 for the case when wT >> 1. 

7. STRONGLY ANOMALOUS SKIN-EFFECT 

In the region of very large l;' it is inconvenient to 
use the general Eq. (6.16) as large n and s become 
important. We find an expression for the surface im­
pedance of a cylinder with a specular surface which is 
asymptotic as 

(7 .1) 

We note that the {;'-dependence of the surface imped­
ance when condition (7 .1) holds can be obtained directly 
from the general expression (6.16 ). We shall, however, 

liZ, 

I Z I I 11n 

start from Eq. (5.8) as in such an approach the physical 
content of the theory ~ revealed more clearly. 

It is natural to assume that when condition (7 .1) 
holds the same situation arises as in the case of the 
strongly anomalous skin effect. In that case the main 
contribution in Eq. (5.8) is given by a small region of 
the order of the penetration depth near the surface of 
the cylinder. Putting 

:r: = 1-6£, y = 1- 6TJ, /(1- 6£) = g(6), o = ~-'r. ~ 1, (7 .2) 

we can reduce Eq. (5.8) to the dimensionless equation: 
1 00 

g" (s> =-= c g( TJ> Q (£, TJ) aTJ, (7 .3) 
1'2 Jo 

where 
00 

Q(~ TJ) = ~ ! 0 (k)'fjlo(k y:;j)dko (7 .4) 
0 

We get thus for the surface impedance the following 
expression 

Z = 4ni<uRo 
c2 lg'(O) I 

= 4njg'(O)I-I [(~)'wR(1+-1-)J'''exp[i(~-~arctg-1 )l, 
c Wo c w"t2 2 5 W'r 

(7 .5) 

where g' ( 0) is a constant determined by Eq. (7 .3 ). In 
a well-known way we can estimate it as follows. We 
consider the functional 

1 00 1"' 00 

1 {g} =- { ~[g'(s)J"ds+-= ~as) aTJQ(s,'IJ)g(6)g('IJ) } 0 (7.6) 
2 0 1"2 0 0 

Varying the function g in such a way that at the bound­
aries of the domain of integration the variation og 
van~hes and using the symmetry of the kernel (7 .4) 
one can show that the function g( 0 satisfying Eq. (7 .3) 
minimizes the functional (7 .6 ). To estimate g' ( 0) we 
can substitute g(O = exp( -M) into (7.6) and find >.. 
such that the function I{ exp( -;\~)} is minimized. Pro­
ceeding in th~ way we find 

jg'(O) I~ J.. = (9n/ 4)''• ~ 1,480 
(7 .7) 

It is clear from Eq. (7. 5) that the dependence of the 
surface impedance on the various parameters for the 
case of specular reflection of the electrons from the 
surface under the conditions of the strongly anomalous 
skin-effect is essentially different from the case of a 
cylinder with a non-specular surface and for a plane 
sample. Under those conditions the surface impedance 
depends in an essential way on the relaxation time. The 
dependence of the surface impedance on the cylinder 
radius and hence on the shape of the cross-section of 
a conductor is relatively weak. 

8. SURFACE IMPEDANCE OFA VERY THIN 
CYLINDRICAL CONDUCTOR 

The expressions obtained above for the surface im­
pedance of thin cylindrical conductors refer to two op­
posite limiting cases (4 .2) and (5 .1 ). It is of great in­
terest to trace how the appropriate formulae change 
from one into the other when the parameter p is 
changed. In the present section we calculate for an 
arbitrary value of the parameter of specularity the 
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surface impedance of a cylindrical conductor which is 
so thin that the penetration depth of the field into the 
metal is much larger than the radius of the cylinder. 
We assume in this section that the electron gas in the 
metal is degenerate. 

The condition that the cylinder radius is small com­
pared to the penetration depth of the field into the 
metal enables us when using Eq. (5.2) to evaluate the 
current density to put Ez(r') = Ez(R). After evaluating 
the integrals we find 

Ez' (R) = 4i ko3R2 1 + p I ( 1 - P ) , 
E,(R) 3n 1- p 2p£ 

(8.1) 

where k0 is defined by Eq. (4.7) and 

f(k) = 1 +~ + 2k3 + -1-(k2(k•- 4)K'(k)- (2k4 + 3k2 - 8)E'(k)- 8). 
2 5 5k2 (8 .2) 

we see easily that for a degenerate electron gas Eq. 
(6.17) is the same as (8 .6) for p = 1. 

In conclusion I express my gratitude to P. L. 
Kapitza and L. P. Pitaevski'i for their great interest in 
this work and for discussions of the results obtained. 
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