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It is shown that large-scale potential fluctuations of magnitude comparable with the forbidden band width exist in a completely 
compensated semiconductor with randomly distributed donors and acceptors. The allowed bands are bent by these fluctuations 
so that they intersect repeatedly the Fermi level, forming electron and hole drops. A relationship is derived between the 
concentration of charged impurities, the characteristic scale of fluctuations, and the densities of electrons and holes. The 
absorption coefficient of such a semiconductor decreases rapidly when the photon energy becomes less than the forbidden band 
width. Electrical conduction is an activated process with an activation energy slightly smaller than half the forbidden band 
width. It is shown that a system of this type can be regarded as a model of an amorphous semiconductor. 

INTRODUCTION 

0 PTICAL absorption experiments indicate that the 
allowed and forbidden bands of amorphous semiconduc­
tors are divided by sharp boundaries. On the other 
hand, microwave absorption and other experiments 
suggest a high density of states at the Fermi level 
located approximately in the middle of the forbidden 
band. FritzschePl has suggested that these observa­
tions can be reconciled if we assume that the short­
range potential associated with the absence of a periodic 
structure produces practically no states in the forbid­
den band. This is why the absorption coefficient of light 
falls sharply when the photon energy becomes less than 
the forbidden band width Eg. Moreover, Fritzsche has 
suggested the existence of large-scale fluctuations of 
the electrostatic potential of amplitude of the order of 
Eg. The bottom of the conduction band and the top of 
the valence band repeat the fluctuations of this poten­
tial so that the optical width of the forbidden band re­
mains constant. Nevertheless the energy of states at 
the Fermi level may be high, as shown in Fig. 1 which 
gives the energy scheme of a completely compensated 
semiconductor. However, Fritzsche did not indicate 
how these large-scale fluctuations arise and what de­
termines their amplitude. We shall show that these 
fluctuations may be due to a random distribution of 
positive and negative charged centers and we shall 
express the scale of the fluctuations in terms of the 
concentration of such centers N and the forbidden band 
width Eg. 

We shall consider a model which basically represents 
a heavily doped and completely compensated crystalline 
semiconductor containing N/2 donors and N/2 accep­
tors per unit volume. This will allow us to use the ef­
fective mass in the description of the electron and hole 
states. We shall derive a relationship between the op­
tical and electrical widths of the forbidden band, the 
law governing the fall in the absorption coefficient of 
light within the forbidden band, and the densities of 
electrons and holes. Some of the results obtained are 
independent of the effective mass approximation and 
they can definitely be applied to an amorphous semi-
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conductor. Other conclusions should be applied to 
amorphous materials with care. 

The theory of strongly compensated semiconductors 
put forward in the present paper is also of intrinsic 
interest. Semiconductors with a very high degree of 
compensation are being currently manufactured. For 
example, Redfield and Crandallf2 l reported the prepa­
ration of a sample of gallium arsenide in which the 
concentrations of donors and acceptors differ only by 
0.001%. At these very high degrees of compensation 
the energy scheme of a semiconductor resembles that 
shown in Fig. 1. In Sec. 1 we shall give a qualitative 
derivation of the physical situation shown in Fig. 1. 
We shall support this by a rigorous theory in Sec. 2 
and we shall study the asymptotic properties of the 
density of states. Finally, in Sec. 3 we shall discuss 
the observable effects and the possibility of application 
of our theory to amorphous semiconductors. 

1. ELECTRON STATES IN A COMPLETELY COM­
PENSATED SEMICONDUCTOR (QUALITATIVE 
CONSIDERATIONS) 

Let us consider a completely compensated semicon­
ductor which contains N/2 donors and N/2 acceptors 
per unit volume. For simplicity we shall assume that 
the heavy doping condition is satisfied for electrons 
and for holes, i.e., that the concentration N satisfies 
the inequalities 

Na,' > 1, Na.' > 1, 

where ae = ti 2 K/ mee2 and ah = ti2 K/ mhe2 are the Bohr 
radii of an electron and a hole. Here, me and mh are 
the masses of an electron and a hole, and K is the 
permittivity. In this case, electrons and holes are in 
collective states (the impurity bands merge with the 
conduction bands), and donors and acceptors are 
charged positively and negatively, respectively. If 
donors and acceptors were distributed uniformly in 
space, electrons and holes would have completely re­
combined at 0°K. This situation would represent an 
intrinsic semiconductor with its Fermi level in the 
middle of the forbidden band. 
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FIG. 1. Energy scheme of a completely compensated heavily doped 
semiconductor. The upper and lower continuous lines represent the un­
perturbed positions of the bottom of the conduction band and of the 
top of the valence band. The middle continuous line is the Fermi level. 
The wavy curves represent the bottom of the conduction band and the 
top of the valence band modulated by the electrostatic potential of 
charged impuritties. The dashed lines are the percolation levels of elec­
trons and holes. The regions occupied by carriers (drops) are shown 
shaded. 

Let us now consider the fluctuations in the impurity 
concentrations on the assumption that there is no cor­
relation between the positions of impurities. We note 
that fluctuations of all amplitudes are possible in the 
case of a random distribution. Let us consider a fluc­
tuation occupying a volume R3 • The mean-square fluc­
tuation of the number of impurities in this volume is of 
the order of ( NR3 ) 1/ 2 • A test electron "feels" the po­
tential energy: generated by this fluctuation: 

e' 
y =- (NR') '"· xR 

(1) 

It is evident from Eq. (1) that in the case of fluctuations 
of sufficiently large characteristic scale R, the ampli­
tude of fluctuations of the potential energy y(R) can 
be arbitrarily large. However, we can readily show 
that no fluctuations of the potential exceeding Eg/2 
can exist. If, in some region, an excess of positively 
charged impurities depresses the bottom of the conduc­
tion band below the Fermi level, the number of elec­
trons which will appear in this volume will be sufficient 
to prevent further depression of the conduction band 
(Fig. 1). 

Similarly an excess of negatively charged impurities 
cannot raise the bottom of the conduction band by an 
amount greater than Eg/2 because then the top of the 
valence band would be shifted above the Fermi level 
and holes would appear in this band. We shall determine 
the smallest size Rg of a typical fluctuation which can 
bend an aliowed band by an amount of the order of Eg. 
If we use Eq. (1), we obtain the following relationships 
for Rg: 

y(R,) = E,, R, = E,'x' I Ne'. (2) 

The number of electron states -Y'(Rg) in a well of width 
Rg and depth Eg is 

(3) 

(Here, and throughout the qualitative discussion in Sec. 
1 we shall ignore the numerical factors.) The excess 
charge of impurities in such a well is Z( R ) = ( NR~)112 • 
At impurity concentrations small compare'! with the 

concentration of host atoms, a typical semiconductor 
satisfies the inequality 

a,= Z(R,) I .K(R,) = (e'N''• I xE,)'1•(Na.')'" ~ 1. (4) 

This means that the electrons necessary for the com­
pensation of the charge in a well of width of Rg can be 
located in the lowest states. In other words, the bottom 
of this well can drop below the Fermi level only to a 
depth which is small compared with the depth of the 
well, as shown in Fig. 1. It follows clearly that a fluc­
tuation of size exceeding Rg is neutralized by electrons 
and holes, i.e., that Rg behaves as the screening 
radius of the impurity potential. 1> 

Thus, large-scale fluctuations transform an intrin­
sic semiconductor in a system resembling a semi­
metal. At T = 0°K this system comprises a fairly 
large number of electrons and holes which are isolated 
in space. For this reason the static conduction in the 
system is not of metallic nature. 

A well of size Rg may have dips and humps due to 
small-scale fluctuations. Naturally, electrons and 
holes will fill such dips (Fig. 1). Let us assume that 
the scale of fluctuations of the impurity potential is at 
least L, where L << Rg. Then, electrons and holes 
form drops of size L, which occupy small-scale dips 
located within deep large-scale wells. The number of 
electrons and holes in such drops is limited by the im­
purity charge and, consequently, it is equal to (NL3 ) 112 , 

whereas the density of carriers in the drops is n( L) 
= L-3 (NL3 ) 112 • When L decreases, these drops break up 
more and more and the density of electrons and holes 
in the drops increases. 

We recall that the number of electrons in a well is 
limited not only by the impurity charge but also by the 
Pauli principle. In a well of depth y( L) the number of 
states is -1~(L) = h-3 [mer(L)]312 L3 • For low values of 
L the number of states is .r( L) < (NL3 ) 1/ 2 and the 
quantum restrictions become more important than the 
charge limitations. We shall introduce a length Re 
corresponding to the transition from the charge to the 
quantum restrictions: 

.tr(R,) = (NR.') 'it, R, =a, I (Na.')'1•. (5) 

We shall now show that when L < Re the drops no 
longer break up, i.e., the basic size of electron drops 
is Re. We can easily show that the length Re is that 
value of L at which the Fermi energy of electrons of 
density n( L) becomes comparable with the depth of 
the well y( L). Fluctuations of the impurity potential 
whose scale is L < Re do not split up the drops be­
cause the humps and dips produced by these fluctua­
tions are characterized by values of y( L) which are 
smaller than the Fermi energy of electrons in a drop 
y(Re). In other words, such humps do not give rise to 
islands in the electron sea. 

Similarly, we can show that the characteristic size 
of a hole drop is Rh = ah/ ( Naft)119• It follows from Eq. 
(4) and from the corresponding inequality containing ah 
that Re, Rh « Rg and y(Re), y(Rh) « Eg. The drop 
charges e(NR~) 112, e(NRft)112 are small compared with 

!)We note that the screening radius of the external charge is, generally 
speaking, smaller than R. and that it depends on the position of the 
external charge with respect to the electron and hole drops. 
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the charge e(NR~)112 of a region of size Rg· There­
fore, a large number of drops participates in the screen­
ing of each of the large-scale fluctuations. Since the 
masses of electrons and holes are different, the charges 
and dimensions of the electron and hole drops are dif­
ferent and the numbers of drops screening identical 
positive and negative charges are also different. How­
ever, the charge symmetry of the screening is restored 
completely by averaging over a region larger than the 
average distance between drops. Since the probabilities 
of positive and negative fluctuations of impurities in a 
random distribution are equal, the statistical proper­
ties of the resultant large-scale potential (which in­
cludes the potential of electrons and holes) are sym­
metrical with respect to a change in the sign of the 
potential. Hence, it follows that at T = O"K the Fermi 
level can be taken as located in the middle of the for­
bidden band, provided we ignore terms of the order of 
y{Re) and y{Rh). 

In the foregoing discussion we have assumed that the 
concentration of donors Nn is exactly equal to the con­
centration of acceptors NA. We can easily see that the 
theory put forward here is also valid if the density of 
extrinsic electrons n = Nn - NA is low compared with 
the average density of electron-hole pairs np, which 
appear automatically as a result of bending of the band 
edges. Obviously, the density np is close to the aver­
age value of the concentration of the excess impurity 
charge in a volume Rg, i.e., 

n,. ~ (NR,') y, I R/ ~ N'e' I E.'x'. {6) 

The theory put forward above is valid if n « np. In 
the opposite case when n >> np, the theory we devel­
oped earlier[3 J should be apphed. In that case the holes 
can be ignored and the screening of fluctuations is due 
to extrinsic electrons. It is shown in[3 l that the corre­
spondin~ screening radius of the impurity charge is 
Rc = N 3/n21 :1 and the Fermi level lies below the un­
perturbed bottom of the conduction band, being sep­
arated from this band by an energy y{Rc) 
= e 2N213/ Kn 113 • If n » np, we find that Rc « Rg and 
y{Rc) « Eg, i.e., the Fermi level lies close to the 
bottom of the conduction band. Thus, as the degree of 
compensation is increased, the screening radius be­
comes larger, the amplitude of large-scale fluctuations 
increases, and the Fermi level dips deep into the for­
bidden band. When this level approaches the middle of 
the forbidden band, the screening is established by the 
creation of electron-hole pairs and the Fermi level d 
does not drop any further. 

2. BASIC THEORETICAL EQUATIONS 

We can easily show that wells of depth y{Re), y(Rh) 
and of size Re, Rh contain many levels [y(Re) 
» :11 2/meR~, y{Rh) » :11 2/mRh] and that electron and 
hole densities in drops are so high that we may assume 
the drops to be filled with an ideal Fermi gas. It is 
natural to describe such a system by a Thomas-Fermi 
equation for the potential energy of an electron: 

4ne' 
~ V = -x- [Nn(r)- NA(r)+ n!.{r)- n,(r) ]. {7) 

Here, Nn(r) and NA{r) are the local concentrations of 
donors and acceptors. The local densities of electrons 

and holes ne ( r) and nh ( r) are given by 

( ) _ { (2m,)'h(!1- V(r) )'l,l3n'll', 
n, r-

0 

( ) _ { (2m")'1,(V(r)- ~~- E,)'1,j3n'/l', V > 11 + E, 
n~r r -

0, V<11+E, 

The Fermi level J.l is found by equating the average 
densities of electrons ne and holes nh. 

{8) 

(9) 

It is convenient to carry out the averaging of Eqs. 
{8) and {9) not over space but over all the values of V 
by means of a distribution function F( V). For example, 
the averaging of the electron density yields 

(2 )'I " 
n, = 3:,~3 ' s (!1- V)'I•F(V)dV. (10) 

By definition, F( V) is given by 

F(V) = s e-"l'll)( v- V{s} )Ds Is e-"!'IDS,. (11) 

Here, the functional integration is carried out over all 
the functions ~ = Nn(r)- NA{r), and V{~} is a func­
tional representing a local solution of Eq. (7), which 
vanishes at infinity. The quantity exp ( -~ { ~ } ) is the 
probability of a fluctuation ~. We shall be interested 
in Gaussian fluctuations, [31 which satisfy 

Q{£}= 2~ Js'(r)d'r. {12) 

Following the discussion in Sec. 1, we shall intro­
duce the dimensionless variables 

r V(r) s(r) 11 
x=-, x(x)=--, f(x)=·-, '1]=-, 

R, E, nv E, 

where Rg and np are given by Eqs. (2) and {6). In 
terms of the new variables we obtain 

where 

t.,x = 4n (! + ·P•- p,), 

{ 2'/, ( T] - x) 'f,l3n'a,, 
£:= 0, 

{ 2'1z(x- '11- 1)'hl3n'a., 
p.= 0, 

x<tJ 
x>'ll' 

x>'11+1 
x<TJ+1 

{13) 

(14) 

(15) 

(16) 

Here, ae is given by Eq. (4) and <lh is found from ae 
by replacing me with mh. The random Gaussian dis­
tribution f(x) is described by the correlation function 

(/(x)f(x')) = 6(x- x'). {17) 

We shall still assume that ae, ah « 1. It then fol­
lows from Eqs. (14)-(16) that in the regions where 
Pe > 0 the potential energy is almost constant and 
close to 'I· In this case, Pe =f. In the regions where 
Ph> 0, we find that x = 11 + 1 and Ph = -f. Thus, we 
are facing the following problem. A continuous charge 
density f(x) is given. We must find regions Oe and 
oh which have the following properties: 

1) f(x) > 0 in Oe and f(x) < 0 in~; 
2) if all the charges contained within Oe and ~ are 

removed, the remaining charges establish a constant 
potential x = 11 inside Oe, a potential x = 1J + 1 inside 
~. and a potential x, satisfying the inequalities 
1) < x < 1) + 1 outside Oe and ~; 

3) the chemical potential 11 is found by equating to 
zero the total charge outside Oe and Oh. 

The problem facing us has no adjustable parameters 
and this shows that the characteristic value of the 
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potentials is of the order of Eg and the characteristic 
size of fluctuations is of the order of Rg. The charac­
teristic size of the regions Oe and Ot is of the order 
of the smallest scale L considered in modeling the 
random fluction f(x). We shall be interested in the 
value of 11 which is obtained in the limit as L - 0. 
Actually, the classical approximation which we have 
used becomes invalid in the case of very small scales 
of the function f. This gives rise to the formation of 
electron and hole drops (for details seel31). Since the 
dimensions of these drops are Re, Rh « Rg, the 
quantum corrections to the classical value of 11 are 
small. 

The electrostatic problem formulated above has the 
following important symmetry. In this problem the 
chemical potential 11 is a self-averaging quantity, i.e., 
it is independent of the actual realization of the random 
function which is specified in a fairly large spatial 
region and which satisfies the correlation relationship 
(17). Let us assume that we have found the regions Oe 
and Ot for some relatization of f(x). We shall assume 
that another realization is the function f'(x) = -f(x), 
which also satisfies Eq. (17). We can easily show that 
the solution of the problem for the new realization is 
represented by regions 0~ which are identical with the 
old regions Ot, and regions Qh, which are identical 
with the old regions Oe. The potential in the 0~ 
regions and, consequently, the new chemical potential 
are both given by T/' = -ry - 1. It follows from T/" = T/ 
that 11 = -7'2 , i.e., in the classical approximation the 
chemical potential is located exactly in the middle of 
forbidden band. The function F( V) should also be in­
dependent of the realization of the random function. 
When the substitution f - -f is made, the sign of the 
potential V is reversed. Consequently, F( V) is an 
even function: F(V) = F(-V). Similarly we can show 
that all the odd correlation functions V(x) vanish. 
These symmetry properties apply only to the large-s 
scale fluctuations of the potential which can be studied 
ignoring the quantum effects. 

An analysis of the asymptotic properties of the solu­
tions of Eqs. (7)-(9) can give us a better idea on the 
nature of these solutions within the carrier drops. We 
shall find first the law which describes the fall of the 
function F( V) for V < 1.1. and V > 1.1. + Eg. Since this 
law is exponential, we can find it by the optimal fluc­
tuation method. r41 We shall consider first the electron 
drops in which 1.1. - V(r) > 0. The idea behind this 
method is to find the function '((x) which gives rise to 
a minimum of the functional n{ ~} subject to the addi-
tio.Q_,al condition 1.1. - V { ~} = ~ > 0. In the region where 
&~ rn » 1' we find that 

InF(J.t (e)= -.Q(f}. (18) 

We shall find it convenient to rewrite Eq. (7) in terms 
of the following new variables: 

1-'- V (r) e'l•x'/, Sfi' 
<p(y)= , y=r-,1-'1-, 8=-(--),-.. 

e e 2a ... ~ m,.E '2 

(19) 

Then, instead of Eq. (7), we obtain 

[ 2'/o ] 
~y<jl =- 4n 8(y)- 3n' qJ'Io , (20) 

and the functional n { e} becomes 
Q{e}= [-E-]'i·~ fe'(y)d'y. 

y(R,) 4 (21) 

The extremal function B(y) can be found from the con­
dition 

6 (fe'(y)d'y-tqJ(e} )=o, (22) 

where cp{ e} is the solution of Eq. (20) taken at the 
center of a fluctuation (this solution vanishes at infinity). 
The Lagrange multiplier t is found from the condition 

qJ{fi}=i. {23) 

The system of equations (20), {22), and (23) contains 
no parameters and, consequently, 0"'( y) is a unique func­
tion. Using Eqs. {18) and (21), we find that 

lnF(fl-e)=-t..{e/y(R,))'t., e~y(R,), {24) 

where 

/, = ~ f fi'(y)d'y 

is a numerical coefficient which can be determined as 
described above. It is evident from Eq. {24) that in a 
typical electron drop {the probability of whose exist­
ence is not exponentially small) the bottom of the con­
duction band is located below the Fermi level and the 
gap between the two is of the order of y ( Re ). Since in 
the case of an optimal fluctuation y ~ 1, it follows 
from Eq. (19) that the size of the electron drop is Re· 
Similarly we can find that when V - 1.1. - Eg >> y(Rh), 

( V-fl-E)'.I. 
lnF(V)=-1... -~-• . {25) 

y(R") 

3. MEASURABLE PROPERTIES 

In this section we shall consider the most important 
experiments in which the structure of electron states 
discussed above can be manifested. 

A. Static Conductivity 

We can easily show that the volume occupied by 
electron and hole drops represent a small fraction of 
the total volume of a crystal. In fact, the total charge 
of electrons in one positively charged fluctuation of 
volume R~ is of the order of the charge in this fluc­
tuation e(NR~)112 • The charge in one drop is e(NR~)112 • 
Therefore, the number of drops in such a fluctuation is 
(Rg/Re)312 and the fraction of the volume of the fluctua­
tion occupied by the drops is (Re/Rg?/2 and the frac­
tion of the volume of the fluctuation occupied by the 
drops is (Re/Rg)3f2 « 1. For this reason the electron 
and hole drops do not form infinite bound chains and 
the static conductivity at the Fermi level is solely due 
to the tunnel effect. The tunneling probability contains 
a small factor exp{ -( meEg)112Rg/ti}. Therefore, at 
moderate temperatures the electrical conductivity is 
due to electrons and holes transferred to their perco­
lation levels Ee and Eh_[S-?J The percolation levels 
Ee and Eh can be found from Eqs. (14 )-{17 ). Since t 
these equations contain no parameters, the gap between 
the electron percolation level and the bottom of the un­
perturbed conduction band Ec is comparable with Eg. 
Moreover, the symmetry of the statistical properties 
of the potential V( r) shows that Ee < Ec. In fact, 
when the energy is Ec, half the space is occupied by 
classically permitted regions. In the case of percola-
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tion in the three-dimensional case the critical fraction 
of occupied space is less than half. raJ It also follows 
from the symmetry of the potential that Ee - !l = !l 
- Eh. 

Thus, the activation energies of electrons and holes 
are equal and are both less than Eg/2. One of the 

present authors has given reasons(7l why even in the 
case of an asymmetrical potential min { Ee - iJ., !l 
- Eh} is less than Eg/2. 

B. Interband Absorption of Light 

The large-scale potential relief shown in Fig. 1 is 
classical in the sense that the probability of tunneling 
under the barriers is exponentially small. Therefore, 
such a relief does not reduce the optical width of the 
forbidden band. The absorption of light quanta with an 
energy deficit t:.. = Eg - tiw > 0 results from fluctua­
tions whose scale is less than Rg. In an earlier paper£91 
we have shown that in the case of a random distribution 
of impurities the absorption coefficient K(t:..) in the 
region tiv < Eg decreases in accordance with the law 

InK(~) =-~(~x/e'N'h)'1•(Na')-'1 ". (26) 

Here, {3 is a numerical coeffiCient which is equal to 
2/ 511' 1/ 2 if the electron and hole masses differ strongly; 
a= max{ae, ah}. The law (26) is close to the experi­
mentally observed dependence K(t:..) ex: exp( -t:../ t:.. o) and 
the characteristic energy t:.. 0 , which is found from Eq. 
(26), is much smaller than Eg, i.e., a definite optical 
forbidden band width does exist. 

In principle the above mechanism may compete with 
the absorption of light by clusters forming multiply 
charged atomic nuclei. In this caser 1oJ we have 
ln K ( t:..) ex: -t:.. 112 ln t:... However, this mechanism may 
be unimportant because impurities with like charges 
separated by short distances may repel each other 
during the preparation of a sample. 

C. Absorption of Microwave Radiation 

In contrast to the static conduction, all the electrons 
and holes in drops participate in the high-frequency 
conduction. The average number of carriers per unit 
volume, np, is given by Eq. (6) and it can be quite high 
in spite of the fact that the Fermi level lies in the 
middle of the forbidden band. 

D. S-Type Current-Voltage Characteristic 

A strong electric field heats electrons and holes and 
the density of carriers transferred to the percolation 
levels increases. This may increase the current and 
enhance the heating of carriers still further. There­
fore, when a sample is connected to a constant-current 
source, the resistance may decrease so much that the 
electric field decreases, i.e., the current-voltage 
characteristic may be of the S-type.£ 111 

So far we have considered only a completely com-

pensated crystalline semiconductor. We must now see 
whether the results can be applied to an amorphous 
semiconductor. The greatest difficulty is presented by 
the validity of the effective mass approximation in the 
case of an electron subject to a potential which is not 
strictly periodic. However, many of the results ob­
tained are independent of the effective mass approxima­
tion. The classical equations (14)-(17) are simply 
based on the assumptions that the distribution of 
charged centers is random and that the local density of 
states decreases rapidly with depth in the forbidden 
band. The latter hypothesis is supported strongly by 
the experimental data on the interband absorption of 
light. It follows from these classical equations that the 
activation energy of the static conductivity t:..E is less 
than half the optical width of the forbidden band Eg/2. 
One of the present authors has shown£71 that this is in 
agreement with the experimental results. We note that 
in our model, which presupposes a random distribution 
of charged centers, the ratio 2t:..E/Eg is independent 
of the parameters of the material. It can be found by 
numerical solution of Eqs. (14)-(17) and of the percola­
tion problem. The deviations of 2t:..E/Eg from the 
theoretical value may be due to correlation in the dis­
tribution of charged centers. The average density of 
carriers np generated as a result of band bending can 
also be calculated without recourse to the effective 
mass approximation. If we assume that the concentra­
tion of charged centers is N = 5 x 1020 cm-3 , we find 
from Eq. (6) that np = 1018 cm-3 , which is close to the 
values obtained experimentally .£ll The scales of lengths 
and energies associated with carrier drops must de­
pend strongly on the validity of the effective mass ap­
proximation. This is also true of the law governing the 
law of fall of the interband absorption coefficient. 
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