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Nonlinear interaction of a monochromatic wave with 
particles in a gravitating system 

A. B. ~ikhailovskii, A. L. Frenkel', and A. M. Fridman 
Siberian Institute of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radiowaves, Siberian 
Division, USSR Academy of Sciences 
(Submitted January 14, 1977) 
Zh. Eksp. Teor. Fiz. 73, 20-30 (July 1977) 

A study is made of the motion of particles in a gravitational field corresponding to the proper 
characteristic monochromatic oscillatory mode of a gravitating collisionless cylinder. In the frame of 
reference rotating with the cylinder, the effect of the inertial forces on a gravitating particle is analogous 
to the effect of a longitudinal magnetic field on a test electric charge. In addition, the particles of the 
cylinder are magnetized, so that (approximately) they preserve their distance from the cylinder axis. For 
this reason, the equation of longitudinal motion of the particles reduces to an equation of the type of a 
mathematical pendulum, which can be solved in elliptic functions. An investigation is made of the 
nonlinear stage of the beam (two-stream) gravitational instability (see A. 3. ~ikhailovskii and A. M. 
Fridman, Zh. Eksp. Teor. Fiz. 61, 457 (1971); Sov. Phys. JETP 34, 263 (1972)): the nonlinear 
evolution of the particle distribution function is studied, and the densities of the kinetic energy of the 
particles and the energy of the monochromatic wave, both averaged over a cylindrical layer, are found. 
The energy balance method is used to determine the time dependence of the nonlinear growth rate. The 
range of applicability of the theory is found and the amplitudes of steady oscillations estimated. In this 
way it is shown that in gravitating systems an important role can be played by a nonlinear mechanism of 
stabilization of a monochromatic density wave which is analogous to the mechanism investigated in a 
collisionless plasma by Mazitov (Zh. Prikl. Mekh. Tekh. Fiz. 1, 27 (1965)) and O'Neil (Phys. Fluids 8, 
2255 (1965)). 

PACS numbers: 12.25. +e 

S 1. INTRODUCTION of the density waves of the interacting subsystems. Ini- 
tially, '" this effect was studied on a gravitating cylin- 

In real astrophysical objects, the velocity distribution der. Later, Ge3', the role of beam effects was investi- 
functions of the particles (stars, gas) often have a beam gated in more complicated systems consisting of two 
nature. Of this kind are: all galaxies with heteroge- interacting disks and a sphere and ellipsoid. It is very 
neous structure in which flat subsystems rotate relative important to establish whether nonlinear stabilization 
to elliptical and spherical subsystems; regions of active of the amplitude takes place o r  whether the instability 
centers characterized by ejections of large gaseous progresses and results in the collapse of the various 
masses; and so forth. density concentrations. We may mention that for the 

lnC", two of the present authors have shown that a of the spiral structure i f  galaxies particular 
beam (two-stream) instability can be excited in gravitat- interest attaches to the interaction of a monochromatic 
ing systems, this resulting in a growth in the amplitude density wave with the particles (stars). 
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In the present paper we draw attention to  the fact that 
in gravitating systems an important role can'be played 
by a nonlinear mechanism of stabilization of the mono- 
chromatic density wave analogous to the mechanism in- 
vestigated in a collisionless plasma by ~ a z i t o v ~ ~ '  and 
~ ' ~ e i l . ~ ~ ]  The reasons for  the analogy between the 
mechanisms c& collective processes in gravitating and 
plasma media were investigated inc1*7*8'. In particular, 
i t  was noted that the kinetic equation of small oscilla- 
tions of a simple model of a gravitating system-a 
rotating cylinder-can be cast into the same form a s  the 
kinetic equation for  a collisionless magnetized plasma 
by a redefinition of the characteristic parameters. This 
is why a gravitating cylinder can sustain a beam in- 
stability described by the same relations as the one in 
a plasma with a magnetic field. 

Replacing the doubled frequency of rotation uf the c yl- 
inder by the cyclotron frequency, 2n- WE, and the 
square of the Jeans frequency by the negative square of 
the plasma frequency, wt - - wi, let us consider the 
upper hybrid branch of oscillations: w2 = w: + w:. In the 
case of a gravitating cylinder, this branch was called 
the rotational branch inc1]. It is characterized by the 
frequency w2 = w t ,  which by virtue of the equilibrium 
condition (Ref. 1) wt = 2Ci2 can also be represented in 
the form w2 = 2n2. 

In. the presence of a beam moving along a generator 
of the cylinder, the rotational branch is excited with the 
linear growth rateL1] 

where a, is the ratio of the beam density to the density 
of the medium; u and VT a re  the directed and the thermal 
velocity of the beam; kc and k a re  the longitudinal and 
the total wave number (see Ref. 1). The expression (1) 
is valid if Cherenkov resonance, w = kcv, predominates 
over the cyclotron resonance, w * 2 0  = kcu, i. e., under 
the condition 2n/kz >>uT (see Ref. 1). An estimate for 
the growth rate analogous to (1) also holds in the case 
of the two-stream instability in a plasma. It also re- 
mains in force in the absence of a magnetic field, i. e., 
in the limit w,- 0, when the upper hybrid branch goes 
over into the branch of electron plasma oscillations. 
In the case of a gravitating cylinder, this limit is pro- 
hibited by the equilibrium conditions mentioned above. 

It is known from plasma theorylgl that an expression 
of the type (1) for the linear growth rate for excitation by 
a beam of plasma ocsillations canbe used only when the 
wave amplitude is not too large, namely, when 

- 

where r2 ~ m / e e * ~  (m and e a r e  the electron mass and 
charge). This condition means that the back reaction 
of the wave field on the resonant particles is negligibly 
small. Otherwise, i. e. , when r y ,  << 1, the wave field 
leads to trapping of the resonant particles, s o  that the 
expression of the type (1) for  the growth rate is re- 
placed by 

where F(t/r) is a function whose explicit form is given 
inCB1. In this case 

The excitation of plasma waves by the beam stops 
when the amplitude of the field reaches values corre- 
sponding to 7 such that 

These results apply to a plasma without magnetic field, 
wE- 0, and to perturbations that propagate along the 
beam, k =  kc. However, one can show that for either a 
plasma with magnetic field o r  a gravitating medium with 
w, - w, and k, << k (and it is this case that is interesting 
for  our problem of a gravitating cylinder) the order-of- 
magnitude relations (1)-(5) remain in force. This en- 
ables us to extend the analogy between plasma and 
gravitating media to the region of nonlinear phenomena. 

In the present paper, we investigate the nonlinear 
stage of the beam instability in the gravitating cylinder. 
In 82 we give the necessary results of the linear 
theory. In 83, we study the motion of particles in 
the gravitational field corresponding to the characteristic 
(monochromatic) oscillatory mode of the cylinder. In 
the frame of reference rotating with the cylinder, the 
effect of the inertial forces on a gravitating particle is 
analogous to the effect of a longitudinal magnetic field 
on a test charge. Moreover, the particles of the cylin- 
der a re  "magnetized," so that (approximately) they Keep 
their distance from the cylinder axis. For  this reason, 
a s  i s  shown in 83, the equation of the longitudinal 
motion of the particles reduces to an equation of the type 
of a mathematical pendulum, which has been solved by 
~ a z i t o v ~ ~ '  and 0 ' ~ e i l ' ~ '  in elliptic functions. 

In 84, we consider the nonlinear evolution of the 
distribution function of the particles and in Sect. 5 we 
find the densities of the kinetic energy of the particles 
and the energy of the monochromatic wave averaged 
over a cylindrical layer. The energy balance method 
(after radial averaging) is used to determine the time 
dependence of the nonlinear growth rate. In 86 we find 
'the region of applicability of the theory. In 87 we esti- 
mate the amplitude of steady oscillations for different 
values of the parameters of the configuration. 

§ 2. RESULTS OF THE LINEAR THEORY OF THE 
BEAM INSTABILITY 

We consider a stationary collisionless system of 
gravitating particles in the form of a radially homoge- 
neous cylinder of infinite length and radius R (seec"). 
In the frame of reference rotating with the cylinder (with 
angular velocity SZ = (27rGp)"2, where G is the gravita- 
tional constant and p the density) the particles move 
only along the axis, which we take a s  the axis of a cylin- 
drical coordinate system (r  and cp are, respectively, 
the radial and the angular coordinate). 

Thus, the stationary radial and azimuthal velocities 
for all particles a re  equal to zero, v, = v,  = 0.. We take 
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the distribution over the longitudinal velocities, F(v,), 
which is no way restricted by the equilibrium conditions, 
in the beam formc" 

(seec1]) and the growth rate Y of the instability associ- 
ated with the excitation of waves by the beam. In i t s  
turn, y consists of two terms: 

Here, y, is due to the Cerenkov resonance: 
with Maxwellian distribution of the main component 
f M(~,):  

1 
f" (0.1 = - exp (-u.'/VT2), 

n'" V ,  (6) 
where k2 r kz +k:, and the prime denotes the derivative 
with respect to the argument; y, is due to the cyclotron 
resonance, 

and beam distribution function f (v,): 

and we assume the conditions Under the conditions we have described, there is besides 
the beam instability (17) only the Jeans instability with 
exponentially small  (if V $  >> V2) growth ra te  y,: 

En addition, we assume that the main component has 
a fairly large thermal spread V,: 

As will be shown below, the parameters of the con- 
figuration can be chosen in such a way that the beam 
growth ra te  (17) has its largest value and, in addition, 
is due basically to Cerenkov resonance: 

Under these conditions, axisymmetric oscillations of 
the structure can propagatecll: 

$ ( t ,  z ,  r )  =$,Jo(k,r)e-"~'-5"e'~'", r<R (10) 

within the cylinder and We shall restrict  ourselves to this case. 

@ ( t ,  z ,  r )  =maKO (k.r) e-'('~f-5c1eTp(t', r>R (11) 
$3. MOTION OF PARTICLES IN THE FIELD OF 
THE WAVE outside it. Here, @(t, z ,  r )  is the perturbation of the 

gravitational potential, t is the time variable, 9, and 
6, a r e  constants that satisfy the conditions of matchingc1' 
on the cylinder boundary, in particular the condition of 
continuity of the potential: 

Suppose that a t  some initial time t = O  in the system 
described above a gravitational potential of the following 
form is switched on (see (10) and (11)): 

cD ( t ,  z, r )  = - Q , ( t )  J,(k,r)cos(-wt+k,z),  r<R, 

$ ( t ,  z ,  r )  =-6,(t)~,(k.r)cos(-ot+k,z), r>R. 
(22) 

where J, and KO a r e  the standard notation for 
the Bessel functions; w, is the Jeans frequency, which 
is related to the angular frequency C2 by the equilibrium 
condition 

Following O'Neil, to determine the motion of the par- 
ticles we restrict  ourselves to the zeroth order of per-  
turbation theory in the small  parameter A@,/@,, i. e. ,  
we se t  

the longitudinal wave parameter k, must satisfy the con- 
ditionscl' 

k . R a i ,  (14) 

We shall assume that the potential (22) satisfies the 
conditions (12), (14)-(16). 

In the region of wave vectors for which y- y,,, the 
condition of Cerenkov resonance can be represented in 
accordance with (7) and (18) in the form 

kzvrqoo, (15) 

and the transverse parameter k ,  the conditions 

lo (k,R) =O, k,RB1 (16) 

(note that instead of (16) we previously ['I erroneously 
assumed Ji(k,R) =O). In (10) and ( l l ) ,  y, is equal to 
the sum Y,=Y, + Y  of the damping rate y, of the wave 
interacting with the main component of the medium 
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We study the motion of particles resulting from the 
switching on of the potential, using a frame of reference 
that moves with the wave along the z axis (and, as be- 
fore, rotates with frequency a). In such a system, the 
potential (22) has the form 

Y 

Mikhailovskii et a/. 11 



8 ( z ,  r )  =-@,J, (k ,r )cos(k ,z ) ,  r C R  (24) 

with a similar expression for r > R .  

The motion of the particles satisfies the equationc12] 

dv/dt = [VX 2n] - V@, 
where 0 = Qi?, and E is the unit vector along the cylinder 
axis. This is the motion that an electric particle with 
unit charge and mass would execute in a constant homo- 
geneous magnetic field H = 2Q and electric potential @ 

(by the choice of the system of units, the velocity of 
light is equal to unity). 

All the particles of the cylinder can be  divided into 
three groups in accordance with the value of their sta-  
tionary velocity v,: 

1) "slowly" moving (in the system of the wave) par- 
ticles, which a r e  displaced along the z axis during the 
"cyclotron" period T =2r/252 = r/Q through a distance 
that is much less than the longitudinal wavelength X 
=2r/lkzl:  

2) particles that a r e  displaced through a distance of 
the order of the wavelength, 

3) "fast" particles satisfying 

The transverse motion of the slow particles is analogous 
to the motion of a charged particle in a longitudinal con- 
stant magnetic field and a slowly varying radial elec- 
t r ic  field, i. e., i t  consists of azimuthal drift; the radius 
of the orbit is of the order of the "cyclotron" radius: 

If the potential @, is comparatively weak, the particle 
is not displaced much radially; the corresponding con- 
dition r,, <<R can, with allowance for (Q), (16), and 
(26), be written in the form 

and means that the perturbation is small, which, of 
course, is also necessarily assumed by the linear 
theory. For the nonlinear theory we a r e  developing, 
we also assume that the inequality (27) is satisfied; we 
shall see below that the condition of applicability of the 
nonlinear theory gives a lower bound on the potential, 
but this bound need not contradict (27). 

Remembering that the initial transverse velocity is 
zero, we find that the paths of slow particles have the 
form of epicycloids, and the longitudinal motion pro- 
ceeds as if the particle remained during the whole time 
at the same distance r from the cylinder axis (r  is the 
coordinate of the particle before the additional gravita- 
tional field is switched on). 

The transverse motion of the fast  particles consists 
of motion in the rapidly oscillating (with frequency much 
higher than the rotational frequency, Ik,v, 1 >> Q) gravi- 
tational field. The oscillations along Y with amplitude 

a r e  even less  capable of changing the radial position of 
the particle significantly. Thus, the change in the 
radial position of the fast particles is even less than 
that of the slow ones, and in our study of their longitudi- 
nal motion we a r e  even more justified in assuming that 
the radial component is constant. 

It is only for the rotationally resonant particles (25) 
that the change in the radial coordinate cannot be ig- 
nored. But the fraction 9f of such particles can be esti- 
mated at 

and in accordance with (6)-(E), (13), and (23) it is ex- 
ponentially small  if 

This last condition can be readily satisfied, and we 
therefore exclude these particles from our treatment. 
Thus, in considering the longitudinal motion, we shall 
assume that the radial coordinate of each particle is 
fixed at the initial value. 

Q 4. NONLINEAR EVOLUTION OF THE 
DISTRIBUTION FUNCTION 

~ - .. . 

We now consider the evolution of the distribution func- 
tion with respect to the longitudinal velocity. The longi- 
tudinal field of the potential (24) is 

3 
Ez (2, r )  = - - @ ( z ,  r )  =-8= (r) sin ( k z z ) ,  az  (29) 

where the amplitude I,(Y) is given by the expression 

8, ( r )  =k,@,J, ( k , r ) .  (30) 

It can be seen that the amplitude B,(r) depends only on 
the radial variable (which remains constant, as we have 
shown above, during the longitudinal motion of the par- 
ticle). The amplitude varies from the maximal value on 
the cylinder axis to zero  a t  the edge of the cylinder (see 
(16)). 

The field (29) leads to the following equation of the 
longitudinal motion (cftsl): 

. .. 
u,=z=-8 ,  ( r )  sin ( k , z ) .  (31) 

The conservation of the energy of the longitudinal mo- 
tion can be written in the form 

Following Galeev and Sagdeev, we can find the dis- 
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tribution function because i t  is constant along the paths 
of the particles and is known at the initial time. 

The distribution function of the particles trapped by 
the wave in their longitudinal motion has the form (in 
the system of the wave) 

For the untrapped particles, the distribution function 
has the form 

The notation here is as follows: 

is the elliptic integral of the f i rs t  kind, cn(u, k) is the 
elliptic cosine (Jacobian elliptic function), dn(u, k) is 
the function defined by the relation 

dn [F(rp, k ) ,  k ]  = (I-k' sinz q ~ ) ' ~ ,  

f (2, v.) = arcsin [ x  sin ('/,k,z) 1, 

i. e. ,  

where 

~ ~ ~ = I / k 2 @ ~ .  (35) 

Like Galeev and Sagdeev, "I we conclude that in the r e -  
gion of the phase space (2, v,) corresponding to trapped 
particles a plateau is formed and one can write down a 
time-averaged distribution function of the untrapped par 
ticles. The evolution differs from that in the problems 
of Mazitov and and Galeev and ~ a g d e e v ' ~ ]  in 
that our configuration does not evolve at the same ra te  
a t  different distances from the axis. The period of the 
oscillations of the particles trapped by the wave in- 
creases in accordance with (34) from 7, on the axis to 
a (formally) infinite value at the edge of the cylinder. 

Q 5. NONLINEAR EVOLUTION OF THE 
MONOCHROMATIC WAVE 

To find the growth rate of the field by the method em- 
ployed here, we use the energy balance equation 

where Q is the mean (over the volume of the cylinder) 
density of the kinetic energy of the particles and W is 

the mean density of the energy of the wave (i. e., the 
sum of the field energy and the energy of the nonreso- 
nant particles; see, for example,c1s1). 

The equation of the longitudinal motion (31) coincides 
with the corresponding equation of 0'NeilC"; essentially 
the same is t rue  of the distribution functions (32) and 
(33) a t  fixed r. Therefore, for the ra te  of change of 
the density of the kinetic energy of the particles in the 
annular cylinder (r, r +dr), averaged over the volume 
of the annular cylinder, we obtain (cf Eq. (30) oft8]) 

2nnz sin ( n n t / n K ~ , )  ( 2 n f l )  nz  x sin [ (2nf  1) nt/ZKz,] 
-I- 

n S ~ ( t + q Z n )  ( I +  q-ln) P ( l+qZn+l)  (i+q-'"-*) ) (37) 

This expression must be averaged over the radius of the 
annular cylinder : 

Note that the radial dependence enters (37) only through 
E,(r) and 7,. 

To calculate W in (36), we must take the integral (in 
accordance with (12) and (16), the external field is al- 
ready very small  at the edge of the cylinder and de- 
creases  rapidly with increasing r, so  that its contribu- 
tion to the energy can be ignored) 

Here, as in (301, 

8,(r)=k,cDoJl(k,r),  

s o  that the radial field strength E,(z,  r )  is 

a@ (2, r )  E , ( z , r )=- - -  --8, ( r )  cos (k,r) . 
ar 

With allowance for (40) and (30), the calculation of (39) 
reduces to calculation of the integrals 

Using the well-known expr essionUo1 

and taking into account (16), we find that 

Finally, the mean energy density of the wave is 

where 

(43) 

" 
Mikhailovskii eta/ .  13 13 Sov. Phys. JETP 46(1), July 1977 



k2=k.l+kL'. We denote vT /Vz v',, v/V= 6 VT/V= 7,. We take 

5=-l ,  klR-i ,  
We shall not calculate explicitly the cumbersome gen- 

1 /~ -5~ /5 -a '" ,  
(49) 

era1 expression for the growth rate y(t).  We shall 
merely show that in the limiting case we obtain exactly then, with allowance for (6)-(8), (14 ,  (16), (17)- 
the linear growth rate. Indeed, in this case, (21), (23), and (34 ,  we arrive a t  the inequalities 
O'Neil. we obtain from (37) 

Hence, averaging in accordance with (38), we find 

If now, keeping V-v, we increase qT and in accord- 
ance with the law ;- V; , decreasing a simultaneously 
in accordance with the law (49) and k, in accordance 
with the law k,Rs1/; (see (23), (9), and (13)), then the 
right-hand sides of (52) decrease exponentially, while 
the left-hand sides decrease not stronger than a power. 
Therefore, from certain sufficiently large VT and v 
onward, all the inequalities (52) will be satisfied. The 
inequality (51) will also be satisfied for a sufficiently 
large beam velocity v no matter what is the value of the 
amplitude a. provided i t  satisfied (50). At the same 
time, the relations (8), (9), (14), (15), and (28) a re  not 
violated. 

(44) 
In deriving the last  equation, we have used the rela- 
tions (41) and (42). 

Finally, in accordance with (36) and using (44) and 
(43), we find 

which really does coincide with the linear growth rate 
(see (21), (I@), 

We now estimate the total gain K of the wave. In ac- 
cordance with (36), $7. ESTIMATES OF THE AMPLITUDE OF STEADY 

MONOCHROMATIC WAVES 

It follows from the above relations that the beam in- 
stability of the gravitating cylinder is saturated when 

Following O'Neil, "I we find 

where * is the equilibrium gravitational potential. It 
can be seen that the ratio a/* a s  a function of kR is 
maximal for kR - 1; a t  the same time 

In accordance with (43) 

This ratio increases with decreasing thermal spread of 
the beam; a t  the limit of applicability of our ideas on 
the kinetic instability, i. e. ,  for vT/v -a1' (see[133 ), 

and from (46) and (47) we therefore obtain 

%=O (~LTO). 

From the last equation we obtain the condition of valid- 
ity of the approximation of constancy in time of the wave 
amplitude which we have adopted in our study of the 
motion of the particles: 

It is interesting to note that when a rotating gravitating 
medium interacts with a beam of comparable density, 
(Y - 1, and comparable velocity, v - V, the perturbed 
gravitational potential + has the same order of mag- 
nitude a s  the equilibrium potential *. -- 

$6. RANGE OF APPLICABILITY OF THE THEORY 

Our theory is applicable when all our adopted as- 
sumptions hold, i. e. , (48), the condition (27) of a small 
cyclotron radius, and the condition (21) that Cerenkov 
resonance predominates. We must also include the 
condition['] that the growth rate of the hydrodynamic 
two-stream instability is small: 
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An estimate is made of the effect of nonconsewation of parity of the 3d-orbit meson states for mesic 
atoms with odd nuclei in the Z = 56-60 and Z- 83 ranges in which the hyperfine structure terms of the 
3p 3/2-3d '/, and 3p I/,-3d '/, orbits respectively intersect. The angular distribution coefficient a in 
W(0) = I+acos0 for quanta emitted by polarized mesic atoms in the 3d--4 1s transition is determined. 
The effect of a weak neutral interaction between a muon and a nucleus and the Coulomb polarization 
mechanism for transferring the nonconservation of parity of nuclear states to mesic atom states in the 
chain of nonradiative transitions of a meson are considered. In the nuclear ranges indicated above the 
effect of the weak interaction for 3d- and 3p-orbits is smaller by two-three orders of magnitude than 
the effect of the polarization mechanism. Under optimal conditions for the intersection of 3d '/, and 3p 3/2 

terms of a mesic atom which, as is shown, can be realized in the range Z = 56-60 this mechanism leads 
to a value of the coefficient a which is approximately equal to the amplitude for the nonconsewation of 
parity for nuclear states P(I, E,) lying at E , z  ho(3d+ Is) and EVzhw(3d+2p). If dynamic 
amplification of the nonconsewation of parity of nuclear states occurs at E"z5-6 MeV, i.e., 
P(I,E,)- lo-', then for the quanta arising from a 3d-+ Is transition of a meson under real conditions for 
the transfer of polarization of the meson spin in the cascade of transitions populating the 3d '/,-orbit the 
anisotropy coefficient a can attain a value of -lo-! 

PACS numbers: 36.10.Dr 

INTRODUCTION the matrix element of the interaction to the difference 

1. The weak neutral interaction between a muon and 
a nucleus leads to a mixing of mesic atom states of op- 
posite parities. For  the 2s$ and 2p$ meson orbits this 
effect has been investigated in a number of papers. "-"' 
with the calculation in Ref. 2 being carried out for the 
range 3 c Z c  82 .  In the case of light (Z < 10)  mesic 
atoms the observation of the effect of the weak interac- 
tion can be significantly impeded by a number of ac- 
companying processes: configuration mixing in the elec- 
tron shell of the mesic atom, the Stark effect of the elec- 
tr ic field of the medium, etc. (cf., Ref. 8), while for 
heavy mesic atoms the role played by these processes is 
insignificant. Since the amplitude of the admixture of 
the state of opposite parity is determined by the ratio of 

between the energies of the states being mixed, i t  is 
natural to seek in the spectrum of a mesic atom states 
of opposite parity close in energy. However, i t  i s  nec- 
essary  that the meson should penetrate the volume of 
the nucleus sufficiently effectively i f  our aim is to de- 
termine the magnitude of the weak interaction between a 
muon and a nucleus. A preliminary calculation of the 
terms of a mesic atom in the Coulomb field of a uni- 
formly charged sphere (R, = 1 .24  x 10-l3 A " ~  cm) has 
picked out three ranges of Z in which the 3djl  and 3pj3 
t e rms  of a mesic atom intersect: 

Range of Z: 55<Z<60 65GZG70 82<Z<85 
Mesic atom terms: 3d'/~-3p'/~ 3dJ/2-3p'/2 3d5/2-3p'/t 
Nuclear spin: I > ' / 2  IS'/? I S i  
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