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The problem of the angular distribution of particles in multiple elastic scattering is discussed. It is shown 
that in the case of scattering by large-scale inhomogeneities possessing a sharp boundary the dependence 
of the halfwidth of the distribution on the sample thickness is determined by two parameters. Thus, two 
parameters of the scattering system, such as the mean size of the scatterers and their concentration, or 
the size and interaction energy, etc., can be determined in a single experiment. Multiple low-angle 
scattering by critical fluctuations is considered. The scattering intensity is found to depend on the angle 
in a power-law manner and to become isotropic rapidly with increase in the sample thickness. 

PACS numbers: 61.80. - x 

1. INTRODUCTION €i (L") =%(Lz-' ~n 2)". (2) 

From the slope of this line, we can determine the angu- 
A s  is well known, scattering is essentially single if l a r  diffusion coefficient 9i1 and then compare this quan- 

the free path length in the medium i s  large in compari- tity with the theoretical results, obtained on the basis 
son with the thickness of the scattering sample. In this of one model o r  another. 
case, the most detailed information on the scattering 
system is obtained from the experimental data. In case 
of necessity i t  is not difficult to treat  the contribution 
from multiple scattering a s  a small  correction in the 
parameter L/l (I is the free path length, L is the sam- 
ple thickness). However, in a number of cases, the 
ratio L/l cannot easily be made small, and then an at- 
tempt is made to satisfy the opposite condition: L/1 
>> 1. To the present time, the question of multiple scat- 
tering of charged particles in  a medium has been 
studied most completely, both experimentally and the- 
oretically. An expsi t ion of the theory of Moliere and 
Bethe that i s  usually applied in this case can be found 
in the book by Mott and Masseyl (see also the review of 
Scott,' cited in "Review of Particle proper tie^,"^ and 
the work of Case and Battle4 and Highland.)5 

From among the researches on the multiple scatter- 
ing of neutral particles, we should note the experiments 
of Dexter and Beeman6 on the multiple scattering of x- 
rays with wavelength of the order of 1 A by powdered 
carbon, and the experiments of ~hil 'shtern et a l ?  on the 
multiple scattering of thermal neutrons in multi-domain 
ferromagnets. In both cases, the single-scattering 
angle turns out to be s o  small  that it cannot be resolved, 
and the method of multiple scattering is used for  the 
determination of the dimensions of the particles. 

For the interpretation of the results of their experi- 
ments, the authors of Refs. 6 and 7 used the following 
simple idea: if the particle which i s  multiply scattered 
is deflected each time by a small  angle of the order of 
some characteristic angle a,, then the probability of 
scattering through and angle 6 >> 9, (but 0 << 1) upon tra- 
versing a large path L (L >>I) should be described by 
the diffusion formula 

I (9 ,  L)  =I (O.  L )  exp {-9aL/6a'l}. (1 

The halfwidth of the scattering curve 8, measured a t  
half its height, is proportional here to the square root 
of the thickness of the sample: 

On the graphs shown in Refs. 6 and 7, the experiment- 
al dependence of e ( ~ ' / ' )  actually seems to be linear a t  
large values of L'I2. However, the corresponding 
straight lines, extrapolated to small  thicknesses, do 
not go through the origin, but intersect a certain posi- 
tive segment on the abscissa (we call this phenomenon 
the "non-zero intercept" in what follows). 

If we assume that the data given in these researches 
a r e  well described by a straight line, then this means 
that at large L there should be a nontrivial correction 
to the diffusion law 
. - - -  

B'(L) =60'L1-' ln 2 (3 

proprotional to L1l2. Since the diffusion law (3) is as-  
ymptotic, there are  also corrections to it, and their 
contributions to the dependence of the halfwidth of the 
scattering curve on L1" vanish as L-  a. As will be 
seen below, the principal of these make a contribution 
of the order  of 9: to 82. 

In addition, there a r e  other corrections, connected 
with the fact that the angular random walks in multiple 
scattering take place not on a plane but on a sphere. 
The chief of these corrections a t  82 << 1 should obvious- 
ly be of the order of p4-94, (L/1 )' and should increase 
in absolute value with increase in L .  

It is clear from physical considerations th@ in the 
general case, in angular random walks, the 6(L11') de- 
pendence should have the following form: a t  small  
ratios L/l i t  should not depend on the sample thickness; 
this should be followed by linear segments according to 
formula (2) and, finally, when L/l is very large, the 
scattering should become isotropic. The corrections to 
the linear part  of the curve, given above, correspond to 
a transition of the dependence @(L' /~)  from the linear 
regime to one of the asymptotic regimes. If 9, is very 
small, then the region of linearity 8(L1' ') is rather 
large. We assume below that the L a r e  such that a,<< 8 
<< 1 and corrections from the boundaries of the region 
of low-angle multiple scattering can be neglected. 
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However, we note that the picture given here of angu- 
lar random walk does not always describe correctly 
multiple low-angle scattering. The fact is that this pic- 
ture is actually based on an assumption of a sufficiently 
rapid decay of the cross  section of single scattering 
u(9) a t  angles that a r e  large in comparison with the 
characteristic angles. Actually, in order  that the prin- 
cipal contribution to the intensity I ( @ ,  L)  be determined 
by the diffusion approximation (11, the existence of a 
mean square angle of single scattering is in the least  
necessary 

In other words, a more rapid falloff of u(9) than X4  i s  
required. In the case in which $ exists, but u(9) does 
not fall off very rapidly, for example, a s  X5, correc- 
tions to the formulas (2) and (3) ar ise  that can exceed in 
value those discussed above. 

In the present paper, we shall show that the falloff of 
the cross  section a s  X5 leads to the appearance of a 
correction to 8'(~'/') of the order of L1I2, and the 
straight line B(L'/') does not pass  through the origin, 
i.e., an "intercept" appears. It i s  important to note that 
the B(Ll1') dependence i s  determined here by two quan- 
tities-the slope of the straight line and the intercept, 
and we can in principle derive two parameters from the 
experimental data which, taken as a whole, character- 
ize the scattering system. At f i r s t  glance, i t  appears 
that this explains the results obtained in Refs. 6 and 7. 
In fact, the experimental situation in Refs. 6 and 7 was 
more complicated. The scattering in these experiments 
takes place from large-scale inhomogeneities having a 
rather sharp boundary. As will be seen from what ap- 
pears  below, there i s  actually a term that falls off a s  

in the scattering cross  section from such objects; 
however, the principal term here falls off as" 
Multiple scattering in this case remains low-angle (g 
<< 1) over a wide range of variation of the quantity L ,  
while the role of large-angle single scattering i s  that 
the slope of the line B'(L'/') turns out to be a slowly 
changing function of L. 

In addition, the presence in the cross  section of a 
term proportional to X5, together with the term X4, 
leads to the appearance in 8(L'I2) of an  increment that 
depends weakly on L and represents the intercept dis- 
cussed above. 

In the next section of the work, we give a simple der- 
ivation of the general Moliere-Bethe formula for the 
intensity of multiple scattering, which enables us to 
analyze the corrections to i t  that arise.  Then, in the 
third section, we discuss multiple scattering by spheri- 
cal inhomogeneities with sharp boundaries (potential of 
finite radius). It is shown that here the halfwidth of the 
angular distribution depends on two parameters-the 
radius of the potential and the interaction energy, and 
cri teria a r e  advanced for their experimental determina- 
tion. 

In the fourth section, multiple scattering by critical 
fluctuations is discussed. The corrections to the 
Moliere formula a r e  analyzed in Appendix I, and Ap- 

pendix I1 is devoted to generalization of the results of 
the third section to the case of multiple scattering by 
inhomogeneities of arbitrary shape. 

2. DERIVATION OF THE MULTIPLE SCATTERING 
FORMULA 

There a r e  in  the literature several variants of the 
derivation of the formula for the particle distribution 
in multiple scattering at small  angles (see the biblio- 
graphy in Ref. 1, and also the review by Ryazanofl).'' 
Here we shall give a rather simple quantum-mechanical 
derivation of the formula for the angular distribution of 
the multiple scattering, which allows us to trace all the 
approximations which lead to the Moliere formula. 

We write down the amplitude of the scattering of a 
particle by a sample in the form of a perturbation-the- 
ory series:  

1 
f.,= J drdU'e-'"' exp ( i ~ , ~ r )  { r ( r )  6 (r-r') 

where p, and p a r e  the momenta before and after scat- 
tering, U(r) is the interaction potential, which i s  the 
sum of the potentials from the scattering centers (we 
use a unit system in which 2m =ti= 1). Then, using the 
averaging procedure described in the book by Abrikosov 
et al.,' i t  is not difficult to  obtain the following expres- 
sion for the cross  section, averaged over the distribu- 
tion of scattering centers: 

x W (r, r'; r2, I>') G(r2, ra) G' (r2', r*') K(r3, r3'; rlq r i l ) .  (6d) 

Here G(r, r f )  i s  the exact Green's function of the parti- 
cle in  the medium (see Ref. 9), Z is i t s  self-energy 
part, W is the total irreducible four-particle vertex. 

For the solution of these equations, we made a num- 
ber  of approximations. We f i r s t  assume that the inter- 
action energy U is small  in comparison with the kinetic 
energy E; seconcf, that the characteristic radius of in- 
teraction Y, is much greater than the wavelength of the 
particle A. If the dimensions of the sample L a re  large 
in comparison with r,, we can then use fo r  C and W the 
expressions obtained for the unbounded m e d i ~ m . ~ * l ~  For 
a thick sample, in which L >>.> =p-', we can neglect in 
the calculation of the Green's function G the effect of 
the boundaries. Since G in this case depends on the 
difference r - rf, making a Fourier transformation, we 
obtain the standard expression G,= (E -p2+z~)-'.  

Let the particles be incident perpendicular on the sur- 
face of a sample having the shape of a plate of thickness 
L. Then, choosing the 2 axis along the incident beam 
we have the following obvious formulas for the functions 
cp and @ entering into (6): 
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( P ~ ( z )  =exp (ipoz) c-z/21,  ~ p - e - ~ Q r e - ( L - z ) ~ z l v  , l r = p z / ~ .  ' (7) strate how the ~ a & s i a n  distribution (1) ar ises  from 

In an unbounded medium, the function K(r, r'; r,, r:) 
depends on three coordinate differences, with respect 
to which we carry  out the Fourier transformation. It 
then follows from (6d) that 

I 
K ( P ,  P'; k )  = (4n)znQo,,r + -j dpl (4n)2noop,,Gp,+~G,,'K(p,, p i ;  k), 

( 2 4  
1 (8) 

K ( r ,  r'; r , ,  r , ')  = 7J d p ,  dp,' e x p [ i k ( r - r , )  ] 
( 2 ~ )  

X erp[ip,(r-r')+ip,'(r,-r,') ] K ( p , , p , ' ;  k ) .  

We have taken i t  into account here that pro>> 1, and 
therefore we have neglected the interference between 
scatterings from different centers. Moreover, in what 
follows, we shall be interested in distances I r - rl I that 
a re  large in comparison with Z and we can therefore as- 
sume that kl<< 1. In this approximation W,.= (47r)%,o,., 
where o,, is the mean scattering cross  section from a 
single center and no is the density of scatterers.  

It is seen from formulas (6) and (7) that the vector k 
in (8) can be regarded a s  directed along the Z axis. A s  
a result, integrating over the modulus of the vector p, 
and taking into account the smallness of Y in compari- 
son with E, i t  is not difficult to obtain the expression 

PPl pp' p, = -, pz = P-- 
pa ' P' Y I "  -- 

In place of K(p,k) we introduce the new function 

K ( k ,  k l = ~ ( p ,  k )  ( l+ ik lp) -I  

and expand the expression (9) in Legendre polynomials. 
Then 

ikl 
= (4n)'n,or - - { h B r - l ( k )  + ( h + l ) R i + l  (k)}, (10a) 

2h+l 

If the scattering angles are  small, f.e., y is close to 
unity, then the basic contribution to  K ( p )  will be made 
by terms with A >> 1. Therefore, in the principal order 
in X-' we can set z,,sl?,,=~,. In this case, the s e t  of 
equations (11) i s  easily solved and 

Making use of this formula, and also the expressions 
(7) and (6a), we obtain the Moliere formula1: 

where S is the cross-section a rea  of the beam. 

In the derivation of this formula, we have replaced 
the sum over X by an integral, and the "partial cross  
section" a, in the numerator of (11) by o,. Moreover, 
we have used the low-angle asymptotic form -of the 
Legendre polynomial P,(9)zJ0 ( ~ 9 ) .  The accuracy of 
all these approximations is discussed in Appendix I. 

Before proceeding to what follows, we shall demon- 

(12) in the case of a single-scattering cross  section 
which falls off sufficiently rapidly with increase in 9. 
We f i rs t  assume that 3 defined by Eq. (11) exists. 
Then, for not very large X we can expand the Bessel 
function in the definition (12b) and obtain the following 
expression for  o,: 

substituting o, in such form in (12a), we obtain the dif- 
fusion formula (1). We note that we can use the expan- 
sion (13) in the calculation of the integral in (12a) for 
the reason that a t  L/l>> 1 the principal contribution to 
this integral ar ises  from the region of small  AS,. Actu- 
ally, J,(A8) falls off as A-'/ at X 8  >> 1; therefore, o, be- 
comes small  in comparison with o, and consequently, 
the integral over the region X >9i1 turns out to be of the 
order of e-L/ ' .  If there exist higher moments of the 
angular distribution in single scattering for example, 
a4 and s o  on, then we can find corrections to the form- 
ula (13) of order (had4 and s o  on; [J0(A9) is expanded 
only in even powers of X9]. Now, substituting o, in 
(12a) and expanding the exponential under the integral 
sign in (X92L/l and higher powers of (X9d2, we obtain 
an asymptotic se r i e s  for I ( @ ,  L) in I/L <<I. Here, how- 
ever, i t  must be noted that even in the calculation of o, 
with accuracy to (A8d4, we must also take into account 
the corrections to the Moliere formula (12) itself, which 
turn out to be of the same order (see Appendix I). 

We now discuss the situation in which there exists 
only 9 and the higher moments cannot be calculated, 
i.e., when o(8) falls off more slowly than 8-' (for exam- 
ple, as X5). Then the definition (12) can be rewritten in  
the following form: 

The basic role in the lat ter  integral is played by the 
large angles 9>9,; therefore, we can substitute the 
asymptotic form of ~ ( 8 )  in i t s  calculation. It i s  obvious 
here that if o(8) F5, then a term appears in the expan- 
sion of a, that is proportional to (X8JS. It is not diffi- 
cult to verify, by calculating the integral in formula 
(12a), that the halfwidth of the distribution I ( @ ,  L) has in 
this case a constant term along with the term that de- 
pends linearly on L1l2. 

3. MULTIPLE SCATTERING FROM A POTENTIAL OF 
FINITE RADIUS 

As was noted in the Introduction, a term proportional 
to appears in the crosg section u(9) a t  large angles 
if the scattering takes place from inhomogeneities hav- 
ing sharp boundaries. We now discuss multiple scatter-  
ing from spherical inhomogeneities. It is intuitively 
clear that the distribution in multiple scattering from 
inhomogeneities of arbitrary shape with sharp bound- 
aries,  randomly oriented in  space, does not differ sig- 
nificantly from the distribution in scattering from 
spheres. This is shown rigorously in Appendix 11. 
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Thus, let  the energy of interaction of a particle with 
the inhomogeneity be equal to Uo i f  the distance from i ts  
center is less  than r,, and equal to zero a t  r> r , ,  and 
le t  Uo << E, where E =p2 is the kinetic energy of the par- 
ticles (we use a system of units with A= 2m = 1). Then 
the eikonal approximation i s  valid for the scattering 
amplitude (see, for example, Refs. 1 and 11): 

ir, ' 6 
= -- j y d y ~ o ( y , )  { e x p [ - i a ( ~ - y ~ ) " l - i ) ,  

60 0 
Y (15) 

where a! = U,Y,/P = U,~Y,/E, 9, = (pro)-' is the charac- 
teristic diffraction angle. If a! << 1, then, expanding this 
expression to second order in a,  we obtain for the 
cross section a($) = I f  (8) 1 

Here the f i rs t  term, which corresponds to the Born ap- 
proximation, falls off as a t  9>> 8, if we disregard 
insignificant oscillations, and the second term falls off 
as F5. Substituting E q .  (16) in the definition (12b), we 
have 

The appearance of lnX9, a s  a factor of (X9a2 [see (14)] 
is connected with the f i r s t  term in (16). A similar log- 
arithm appears also in the scattering by a Coulomb po- 
tential (see Ref. l) ,  since in this case the cross  section 
also falls off a s  X4. 

Formula (17), which is obtained a t  a! << 1, turns out to 
be valid over a wide range of variation of a!. We can 
convince ourselves of this if we write out the scattering 
cross section in the form of a ser ies  in a!, substitute 
the expression obtained in the definition (12b) and, inte- 
grating termwise, collect all the t e rms  in front of each 
of the powers of a!. This procedure was carried out by 
us in Appendix 111, where i t  i s  shown that the expres- 
sion (17) holds for  arbitrary a!, even at a! >> 1, if only 
a!'<< 82, and 

We note that the conditions a! << 1 and a! >> 1 corre- 
spond to two different physical situations. In the f i rs t  
case, the particles a re  diffracted by inhomogeneities, 
and in  the second, passing through them, they experi- 
ence refraction. Therefore, the region a! << 1, i.e., 
U,/E << (pr,,)-' is known as the diffraction region, while 
the region a! >> 1 is known as the refraction region. It is 
evident that a t  a! >> 1 the single scattering takes place 
principally at the characteristic refraction angle % 
= U,/E = a!8,>> 8,. In the diffraction region, the scatter- 
ing cross  section is small  and therefore the free path 
length 1 = (4nnoao)-' is much greater than the distance 
between the scatterers than their dimensions. In the 
refraction region, i f  the density of inhomogeneities no 
is of the order of ri3, the free path length is I -yo. 

On the other hand, for multiple scattering, satisfac- 

tion of the condition L/1>> 1 is required, i.e., at a << 1, 
i t  takes place at substantially greater thicknesses than 
at a! >> 1. In the case of the same ratios L/l the half - 
width of the distribution for diffraction will be signifi- 
cantly smaller than in  the case of refraction. Neverthe- 
less, in an arbitrary case, the transmitted beam in 
multiple scattering should be entirely diffuse. Here we 
can monitor the multiplicity through the dependence 
[Z(O, L1/2)]-112, which should be linear in the region 
( L / Z ) ~ ' ~  >> 1. 

We now turn to the calculation of I(@, L) by formulas 
(12a) and (17). We introduce a new variable of integra- 
tion 

~ = h f f ~ ( R t , l l , ) " .  = { / n r a Z n } -  B-lnB=ln(4LIZ,); 

we then obtain from (12a) 

The value of the upper limit y,, in this formula is de- 
termined by the region of applicability of the expression 
(17). Actually, formula (17) is valid at small  X9,. 
Therefore, the region of integration over X in the ex- 
pression (12a) must be divided into two parts, such that 
in one of them the expansion (17) is applicable, while in 
the other, we can use for a, i t s  values a t  large X9,. 

As has already been noted, the region of integration 
in (12a) in which X9,> 1 gives a very small  contribution, 
of the order of e-L/', and this contribution can be neg- 
lected. On the other hand, in  the region in which X9, 
< 1, the values of X that a r e  significant turn out to be 
those a t  which y s 1, X9, << 1. In the case of further in- 
crease of X the integrand begins to fall off rapidly and 
reaches a minimum cIose to the boundary of the region 
of applicability of formula (17); i t  then becomes of the 
order  of e-L/', Here 

In the vicinity of the boundary, i.e., in  the region in 
which X9,- 1, the integrand begins to increase again, 
but i n  fact this growth i s  fictitious and i s  connected with 
the approximate character of the formula (17). At y - 1, 
the integrand should remain small and i t s  values in this 
region should match up with the values obtained a t  y > 1, 
(i.e., ha0> 1). 

Thus, with accuracy to a quantity of order exp(-L/El) 
the value of the integral i n  (19) is practically indepen- 
dent of the upper limit i f  y ,, 5 ( L / Z , ) ~ / ~  and the point of 
the minimum of the exponential in (19) can be taken as 
the value of y,,. This question is discussed by us  in 
such detail because a t  not very large B i t  i s  difficult to 
calculate the integral analytically with great accuracy. 
For practical purposes, i t  is best to obtain the distri- 
bution I ( @ ,  L) and i ts  halfwidth from (19) with the help of 
an electronic computer. 

However, if B is sufficiently large, then the integral 
in formula (19) can be calculated by expanding the inte- 
grand in the se r i e s  in y2~-11n(y '/4) and C ( I , / L ) " ~ ~ ~ .  
Here, limiting ourselves to the first  orders in both 
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quantitites, we obtain 

(20) 

l i e .  L)=I,,(O, L ) i l , ( e .  L)+I,(LI, L ) .  

Thus, in the zeroth approximation the distribution of 
particles by angle is described by the Gaussian curve 

with a width varying as LB(L). The equation for  b, 
generally speaking, i s  solved numerically (the corre- 
sponding tables a re  given in the work of Marion and 
~ i m m e r m a n ' ~ ) ;  however, if B is large, then, with 
accuracy to several percent, the second iteration of this 
equation is already satisfactory: 

(22) 

Thus, i t  follows from the expression (21) that the slope 
of the halfwidth of the distribution B(L'/~) depends log- 
arithmically on L in this approximation. 

The integrals in  the expressions for I,(@, L) and 
I,(@, L) are easily reduced to tabulated ones. It i s  
shown3' that 

Tables of the exponential integral m ( x )  and graphs of 
the confluent hypergeometric function ,F1(5/2, 1, -x2) 
can be found in the book of Jahnke, Emde and Lb'sch.13 

We calculate the halfwidth of the scattering curve 
g (L112), determined by formulas (21) and (23), iterat- 
ing the equation 

I @ ,  L )  = I / ! I ( O .  L )  (24) 

over B-l. Limiting ourselves to the f i rs t  iteration ap- 
proximation, we get 

e ( L I ) ? )  =DL' ?+T.  (25) 

where D =D(L) and T = T(L) a r e  slowly changing func- 
tions of the thickness: 

In order to have the right to make further iterations 
and to consider the higher powers in B1 of the obtained 
solution, we must take into account in the expression 
(16) the higher powers of the expansion in  the quantity 
B-A ln(y2/4) under the integral sign. We must keep in  
mind here that the accuracy of the expression (19) itself 
is limited by the approximate character of the form of 
(17) and the accuracy of the Moliere formula (12) (see 
Appendix I). Therefore, inclusion of higher orders of 
the expansion in B1 ldy2/4) in Eq. (19) does not always 
make sense. 

Finally, we shall show that if the multiple scattering 
takes place from a random structure of inhomogeneities 

.of arbitrary shape, then we must understand ro in the 

expressions (19)- (26) to be the mean linear dimension of 
these inhomogeneities, i.e., the quantity r, is of the 
order of the cube root of their volume (see Appendix 11). 

In conclusion to  this section, we return to the question 
of the intercept, which was discussed above in connec- 
tion with the results  ofv the researches of Dexter and 
Beeman6 and Shil'shtein et u Z . ~  It follows from the 
formula (25) that if we draw the tangent to the curve 
g(L1/') at the point with the abscissa L:I2, then, by vir-  
tue of the fact that D and T depend on L'12 (even though 
weakly), the angle of inclination of this tangent will de- 
pend on L:/'. The tangent, continued to small values of 
L1I2, intercepts on the abscissa an interval L;I2, the 
value of which will also depend on L:12, and the fact that 
this intercept i s  not equal to zero is connected both with 
the dependence of D on L112 and with the presence of the 
quantity T in formula (25). On the other hand, in the 
case in which we can separate from the intercept the 
contribution connected with T, we can determine from 
the experimental data two of the three parameters U,, 
yo, and no of the problem. 

It is not difficult to  formulate cri teria for which the 
principal contribution to the intercept is connected with 
T. For this, in addition to the condition that B >> 1, it  is 
necessary that the inequality 

L,<L,< (BL,) (27) 

be satisfied. Unfortunately, i t  is not possible to draw 
any final conclusion from the experimental data6* on 
the applicability to them of the results of the present 
research, since i t  is not clear how well the conditions 
of multiple scattering are  satisfied. If these conditions 
were poorly satisfied, the result can be a non-informa- 
tive imitation of the intercept, due to trivial correc- 
tions (see Appendix I). 

4. SCATTERING FROM CRITICAL FLUCTUATIONS 

In this section, we discuss multiple, low-angle scat- 
tering of particles from systems which experience a 
second-order phase transition (ferromagnetics near T,, 
liquids near the gas-liquid transition, and s o  on). It is 
well known that a s  the Curie temperature i s  approached, 
the fluctuations of the order parameter increase strong- 
ly in such systems. In this connection, the scattering 
from the fluctuations increases, while the f ree  path 
length decreases and, in principle, can become less  
than the dimensions of the scattering system. As an 
example, we consider the multiple scattering of slow 
neutrons from fluctuations of the magnetization in fer-  
romagnets above T,. (The results obtained will be valid 
also for other systems if the wavelength of the scat- 
tered particle is small in comparison with the charac- 
teristic dimensions of the critical fluctuations.) 

As has already been shown,14*15 in the case of critical 
scattering in iron a t  T = (T - TC)Ti1- the contribution 
of double scattering by a sample of thickness of several  
millimeters reaches tens of percent. Thus, a t  large 
sample thicknesses, the scattering in this temperature 
range can become multiple. Here, as is well known 
(see, for example, Ref. 15), the transfer of energy in 
the scattering is small and therefore we can use the 
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formulas introduced above for the description of multi- 
ple scattering. 

The cross  section of single scattering has the well 
known f orm" 

where R, is the classical radius of the electron, Y,, is 
the gyromagnetic ratio of the neutron, 2- 1, p is the 
momentum of the neutron, a is a quantity of the order  of 
the lattice constant, K =  a-lr2 i s  the inverse correlation 
radius, va 2/3, CI = cos8 is the cosine of the scattering 
angle. 

In order to calculate the distribution I(8, L )  by means 
of formula (12a), we must f i rs t  find a,. However, the 
expression (12b) now i s  unsuitable for these purposes, 
since at 9 >> 8, (but 8 << 1) the value of a(@, defined by 
Eq. (28), falls off a s  X2. Therefore, a, must be deter- 
mined from Eq. (lob). Substituting a(p) from (28) in 
(19b) and using the Heumann integral representation for 
the Legendre functions (see, for example, Ref. 131, we 
obtain 

where Q, is a Legendre function of the second kind. 
Since X8,<< 1, we can then write the following approxi- 
mate equality for QA(1+92d2): 

Since we a re  interested in a, at A>> 1, then we replace 
the logarithmic derivative of the gamma function *(A) 
by i t s  asymptotic form J/(X)=lnX. 

We first  calculate the free path length I = (4nnuo)-' en- 
tering into formula (12a), where n i s  the density of mag- 
netic atoms. According to (301, we have 

In this formula, R0yn/a i s  a quantity of the order of 
lo-'' cm; therefore, the f ree  path lenogth for neutrons 
with a wavelength of the order of 20 A can become less  
than one millimeter, i.e., the region of multiple scat- 
tering, generally speaking, is completely accessible to 
experiment. 

In order to obtain the distribution in the case of multi- 
ple scattering, we substitute a, from formulas (29) and 
(30) in (12a). Here 

S - .B 
I(e,  L) - -I Ad& J ,  (he) h-', v= Lllln - 

2n o I 2.1 

In order that the scattering be low-angle in this inte- 
gral, the principal contribution should be made by the 
region in  which X > > l .  This requirement leads to the 
condition L/1< 2 1 ln(8d2) I . 

On the other hand, multiple scattering is realized a t  
L/l>> 1, so that the region of low-angle multiple scat- 
tering turns out to be rather narrow: 

We estimate the integral (32) in two limiting cases: 
8 >>a, and 8 << 9,. Since the expression (32) holds only 
at X8,< 1, we need to assume for  these estimates that 
the upper limit in  the integral is a finite quantity, less 
than 9:. At X >> 82, the quantity a, decays as x- ' /~  and 
the contribution to the integral from the region X>8i1 
will be exponentially small  a t  large L/1. Furthermore, 
the region X< 8-', i.e., the region in which Jo(X8)- 1, 
plays the principal role in the integral. Thus, the fol- 
lowing expression i s  suitable for the estimates: 

Here we note a curious circumstance. The cross  sec- 
tion of each of the elementary scattering acts depends 
on 9 logarithmically (a logarithmic situation arises) and 
the power-law dependence of the cross  section on 0 
a r i ses  a s  a result  of the summation of the principal 
logarithms. 

In conclusion, the authors express their gratitude to 
S. Sh. ~hil 'shtein, who directed their attention to the 
disparity of the experimental data with the simple dif- 
fusion picture. To him, and also to V. A. Ruban, the 
authors a r e  grateful for a large number of intervesting 
discussions. They also thank Yu. M. Shabel'skii for 
numerical calculations which made clear a number of 
details of the results  discussed in the paper. 

APPENDIX I 

We now discuss the corrections to formula (12). For 
this purpose, we write down the expression for the 
multiple scattering cross  section that follows from 
formulas (6a) and (7): 

(A.I.1) 
where the quantity k,(k) is defined by the se t  of equa- 
tions (10a). In order  to obtain formula (12) from this 
expression, we must make the following simplifica- 
tions : 

1) neglect the quantity (I ' - 1)/1'=82/2 in comparison 
with unity; 

2) neglect the kl component in the factors (1 +ikld ,  
(1 +ikl)' under the integral sign; 

3) decouple the infinite set  of equations (lOa), assum- 
ing K,, aK,; 

4) replace the quantity a, in  the numerator of the solu- 
tion obtained for this system by a,; 

5) replace the summation over h by integration; 

6) use the low-angle asymptotic forms of the Legendre 
polynomials: P,(9) =J0(h9); 

7) neglect unity in the factor 2X+ 1. 

The corrections to the cross  section from the f i rs t  
two approximations, I("(8, L)  and I"'(8, L), are  calcu- 
lated in trivial fashion and have the following form: 
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where I(@, L) is defined by formula (12). 

The form of the corrections that arise when account is 
taken of the other approximations mentioned depends on 
the character of the interaction. Therefore, we carry  
out the subsequent calculations for the case of a suffi- 
ciently smooth potential, in which o(8) falls off more 
rapidly than X4. In order to take into account the inac- 
curacy due to the decoupling of the se t  of equations 
(10a), we iterate these equations with respect to A-'; 
then 

In the derivation of this formula, i t  turns out to be con- 
venient to take into account a t  the same time the cor- 
rection connected with the replacement of a, by o, in the 
numerator of the forumla (11) for K,. 

We now consider the effect of the replacement of the 
summation over a discrete se t  of values A by integra- 
tion (12a). We write down the sum in (A.I.l) in the form 
of a Sommerfeld-Watson integral (see Ref. 17): 

S i d h  =-+I--- 
4n cos nh 

(A.I.4) 
where the integration contour c bypasses the real  posi- 
tive semiaxis, and excludes the origin of the coordi- 
nates. In the integral written in such a form, i t  i s  not 
possible to detour the contour along the imaginary axis, 
as is usually done. We shall therefore calculate the 
integrals along the upper and lower par ts  of the contour 
separately. We continue each of the integrals along L 
into the complex plane: the f i rs t  of them, I'(L) on the 
imaginary negative semiaxis, and the second, I-(L), on 
the positive one. After this, we can detour the path of 
integration over A in each of the integrals. In Z+(L) 
along the positive imaginary semiaxis, and in I-(L) 
along the negative, i.e ., we can write for I+ 

0 

(A.I.5) 
We must now use the identity (see Ref. 17) 

We then obtain the foliowing formula for I'(@,L): 

Here we have replaced the Legendre function in the 
principal term by i t s  low-angle asymptotic form. 

We immediately note that corrections are of the same 
order a s  the corrections which follow from the replace- 

ment of formula (k1.7) by formula (12) for the succeed- 
ing terms of the low-angle asymptotic form of the 
Legendre functions. But these corrections can be cal- 
culated by substituting the following expression for 
J,(A@) in (12): 

' i , e z ~ l ,  ( A B ) I W - J , ( ~ ~ )  + f ~ ~ e ~ 3 ( ~ e )  I. (A.1.8) 

We continue the transformations in (kI.7). After in- 
tegration over A we have 

(A.I.9) 
Further, returning to real  L ,  adding I-(@, L )  to the ob- 
tained expression, and integrating over I we obtain 

APPENDIX II 

We now show that for inhomogeneities of arbitrary 
shape, provided only that they a r e  randomly distributed, 
formula (17) applies, in which Y, i s  defined in order of 
magnitude as the cube root of the volume of the inhomo- 
geneities. We f i rs t  establish the fact that the principal 
term u(8) in  this case falls off a s  X4. The scattering 
cross  section from the inhomogeneities can be written 
in the Born approximation in the following form: 

where the integration over r and r' is carried out over 
the volume of the inhomogeneity. We introduce the 
variable 6 = r - r'; then 

(A. 11.2) 

Here AV(6) is the volume bounded by the intersection of 
the surface of the inhomogeneity with the surface of the 
same inhomogeneity but displaced by the vector f . 

If the orientations of the inhomogeneities a re  equally 
probable, then all  the formulas obtained above contain 
the cross  section averaged over these orientations. 
But the mean (aV(6)) depends only on I 6 I ; therefore, 
the integral over the angles in the expression for the 
mean cross  section is easily carried out, and by inte- 
grating the remaining expression by parts, we obtain 

U2 1 
O ~ - - { - - C O S ~ C [ C ( A V ( C ) > ]  (4n) q' l o z c m ~ + ~ s i n q C [ ~ ~ ~ ~ ~ C ~ ~ l r ~ ~ ~  4 

I v (AV'(0)  ) -- c o s q ~ [ ~ ( ~ v ( ~ ) ) ~ ~ ~ ~ : ' m ~ } . . .  =-zZ--, 
4' 

(A. 11.3) 

where b,, is the value of d corresponding to the tan- 
gent to the surface. [ ~ n  the case of spheres ~ v ( b )  
= 2r(2/3r; - 1/2r;6 + 1/3(L/2)3}.] 

The f i rs t  term in (A.II.3) is equal to zero. The sec- 
ond term i s  also equal to zero a t  the lower limit. Fur- 
ther, since we a r e  interested in large q =pa, the upper 
limit in these expressions contains a rapidly oscillating 
function, and therefore i t s  contribution to  the integral 
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(12b) will be small. On the other hand, it is obvious 
that 

Similarly, starting out from formula (15), we can show 
that there is a term in second order perturbation theory 
for the mean scattering cross  section from the inhomo- 
geneities that falls  off as X5 which also reduces in  this 
case to an expression for  a, of the same structure a s  
(17). 

APPENDIX Ill 

We expand the expression (15) in powers of a and in- 
tegrate with respect to y.  Then the "partial cross  sec- 
tion" can be written down in the form of a double sum: 

x Jz dz Jo(hfE,z) J.,z+, (z) Jm,,+, (~)z- '" '+")/~-~ . (A.III.I) 

In the obtained expression, with the help of subtractions 
of the first  t e rms  of the expansion of J0(X8,,z) in  h8,z 
from the corresponding terms of the series,  we sepa- 
rate a term that is independent of A (total cross  sec- 
tion), and also separate the t e rms  proportional in the 
principal orders to A2 lnA, A2 and hS: 

-XZ -- (ia) * (-ia) .I .2i,l+-)/zr 1+ 1 r E+ 1 
2 

n,mn2 
n! m! ( 2  ) ( 2  ) 

It is easy to obtain the value of oo by summing the se-  
r ies  (A.III.l) at A = 0 o r  starting out directly from the 
formula (15). It is also not difficult to  calculate the 
second and last terms [see (14) and (17)]. It remains 
to sum the ser ies  in the case of (A92 [we neglect the 
higher powers of X9, in the expression (A.III.2)I. After 
carrying out integration over z we obtain for the con- 
tribution to the cross  section that is  proportional to h2 

(ia) (-iaIs ) (A.III.~) E (n-i)! (n+*) ( n - 0  
n=2 

We f i r s t  note that terms of order  a4  in  this expression 
cancel each other exactly. This cancellation turns out 
to take place in all orders of perturbation theory, i.e., 
a:'= 0. This can be verified by direct summation of 
the se r i e s  in (A.111.3). We shall now show how this i s  
done. We write 

and calculate one of the four sums obtained, for exam- 
ple, 

(-ia)"' 
~ ( a , - -  2 

-2 
(m+i) (m-i) 1 

Differentiating F (a) with respect to a ,  we get 
d 

- F ( a )  da =a(ei"-I), 2 ~e ~ ( a )  =-2 1 daa(i-cos a). (A.III.5) 

Calculating the remaining sums from (A.III.3) in similar 
fashion and combining them, we obtain a?' =O. 

 he falloff of the scattering cross section as  B-' is  charac- 
teristic of interactions that a r e  described by Coulomb's law 
at  small distances and was discussed in detail in Ref. 1. 
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