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The critical dynamics of cubic ferromagnets above T, in a magnetic field is considered on the basis of the 
dynamic scaling hypothesis. The expressions for the Green functions in the hydrodynamic and critical regions 
are analyzed in the limiting cases of weak and strong fields. The homogeneous dynamic susceptibility in a 
magnetic field is considered in detail. It is shown, in particular, that, because of the existence of spin diffusion, 
the critical damping depends nontrivially on the temperature and the field in weak fields. 
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1. INTRODUCTION the condition (1) i s  fulfilled. Indeed, if we neglect the 

Thus far, the theoretical investigation of the critical 
dynamics of ferromagnets (see, for example, Refs. 
1-5) has been limited largely to the simplest case of 
zero magnetic field. But quite a large number of ex- 
periments devoted both to the investigation of paramag- 
netic resonance above T, (see, for example, Refs. 6-8) 
and to the measurement of longitudinal magnetization 
relaxation in a magnetic fieldg-" have been performed 
in recent years, and, because we do not have a proper 
picture of critical phenomena in a field, the results of 
these experiments have not really been discussed. Fur- 
thermore, in their recent experiments on critical neu- 
tron scattering in iron located in a magnetic field and a t  
a temperature above the Curie point, Okorokov et a1.12 

dipole forces, then the magnetization in a ferromagnet 
located in a magnetic field executes an undamped uni- 
form precession. All the perturbations connected both 
with the inhomogeneity and with the dipole-dipole inter- 
action lead to the damping (of constant I'), and a change 
in the frequency, of the precession. Therefore, the 
magnetic field begins to govern the critical dynamics 
only when the Larmor frequency becomes of the same 
order of magnitude a s  the damping constant I'. If at the 
same time the inequality (1) i s  fulfilled, then r i s  a 
function of 7, and weakly dependent on H. If, on the 
other hand, gpH >> ~ , ( x a )  'I2, then the damping, like 
the static quantities, i s  primarily determined by the 
field strength, and varies slowly with the temperature. 

detected polarization effects that, a s  shown in Ref. 13, In the second section of the paper we give expressions 
allow us to obtain nontrivial information about the dy- for  the Green functions of the critical fluctuations per- 
namics of critical fluctuations. pendicular and parallel to the field, and analyze their 

In the present paper we consider the critical dynamics 
of ferromagnets in a magnetic field, taking both the ex- 
change and the dipole interactions between the atomic 
spins into account, but completely neglecting the effects 
of the crystal anisotropy, The entire analysis i s  based 
on the dynamic-scaling hypothesis,' and has a phenom- 
enological character. 

AS i s  well known (see, for example, Ref. 14), in the 
static theory, a field i s  considered to be weak if the 
following condition i s  fulfilled": 

gpH<Tc ( x u )  i i - " ' l Z ,  (1) 

where H i s  the internal magnetic field, x-I = R,(T) = a7-" 
is the correlation length, T = (T - T,)/T,, a is a length of 
the order of the interatomic distance, v =  2/3, and q i s  
the Fisher exponent, which i s  small, and will be neg- 
lected below. If the inequality (1) i s  replaced by the op- 
posite inequality, then the field i s  strong, and the cor- 
relation length ceases to depend on the temperature, the 
field-dependent correlation length being given by the 
formula 

R, ( [ I )  =xII-'=a ( T , / g p ~ )  "'. (2) 

Thus, if g p H  >> ~ , ( n a ) ' / ~ ,  then all the static quantities 
a r e  primarily functions of H, and depend weakly on T. 

At the same time, the effect of the field on the critical 
dynamics can be appreciable even in the case in which 

behavior in the limiting cases of weak and strong fields 
in the exchange temperature region. In this region, de- 
fined3 by the inequality 4nxO << 1, where X, i s  the mag- 
netic susceptibility of the material, the dipole forces 
can be taken into account within the framework of per- 
turbation theory. In the third section, a similar analy- 
s i s  i s  performed for the dipole temperature region, in 
which 4nx,>> 1. Finally, the fourth section of the paper 
i s  devoted to the question of the homogeneous dynamic 
susceptibility in a magnetic field, In this section we 
show, in particular, that, owing to the presence of 
spin diffusion, in a weak field the position and width 
of the paramagnetic resonance line and also the longi- 
tudinal absorption depend on the quantity H in an irregu- 
l a r  fashion. The experimental investigation of such a 
dependence would, in principle, allow us to determine 
the coefficient of spin diffusion by radio-frequency 
methods. 

2. SPINSPIN CORRELATIONS IN A FERROMAGNET 
ABOVE T, IN A MAGNETIC FIELD. THE EXCHANGE 
APPROXIMATION 

In this section we give for the pair spin Green func- 
tions G,,(q, a, H) formulas generalizing the dynamic- 
scaling expressions1 to the case of a nonzero magnetic 
field: 
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where the S; a r e  the atomic-spin components. The av- 
eraging is performed over the states of the magnet, 
which can be described by the Hamiltonian 

Here se and &ck a r e  respectively the exchange and dipole 
parts of the Hamiltonian; srn describes the interaction 
of the magnet with the external magnetic field He,; V , ,  
i s  the exchange integral; r,, = r, - r,, the r, being the 
coordinates of the atoms; gpS i s  the effective magnetic 
moment of the atom; ~ , = 4 n ( g p ) ~ v , l  i s  the characteris- 
tic energy of the dipole interaction, vo being the volume 
of the unit cell; and n =  qq-l. 

In this section we discuss the exchange temperature 
region, defined, according to ma lee^,^ by the condition 
4rxO<< 1. Then, we can, on excluding the region of very 
small q values (see below), neglect the dipole forces in 
the first  approximation. Then in the absence of a field, 
the tensor GaB i s  isotropic, and i s  usually written in the 
following form: 

P 0 
~ . . ( q .  x ,  . ) = G O ( ~ , ~ ) F ( ~ ,  --) 6t.=G.(q,  x )  rr(g, x ,  a )  

Q ( q ,  x )  
6 a ~  

w+i l ' (q ,  z ,  w )  

(5) 
The static Green function 

is given with a high degree of accuracy by the Ornstein- 
Zernike formula, according to which 

where Z -S(S+ 1)/3. The behavior of the characteristic 
critical-fluctuation energy Sl(q, u) and the function 
r (q ,  u, w) i s  known only in the various limiting cases. 
Thus, in the hydrodynamic region, i.e., for q << u and 
w << Sle(u) = ~ , ( x a ) ~ / ~ ,  the dynamic form factor F(q, u, w) 
has the diffusional form, i. e., I? (q, u )  = D(u)q2, where 
D(x) - ~ , ( u a ) l ~ ~ a ~  i s  the coefficient of spin diffusion. 

In the critical region, where q >> u, we have 

The form of the function I?(q, w) for finite w i s  unknown; 
we can only asser t  that the real  and imaginary parts of 
r a r e  of the same order of magnitude when w- Cl,(q). 
The properties of r (q ,  w)  a r e  studied in Ref. 15 in the 
limit w >> Sl,(q). 

The fluctuations become anisotropic when the magnetic 
field i s  switched on. The two transverse Green func- 

tions G+- and G - ,  describe the fluctuations of the mag- 
netization in the direction perpendicular to the field, 
and coincide in the static limit (i.e., Go,- = Go-+ = G, 
= G, = G,), while the longitudinal Green function Go,, 
=Go,, corresponds to the fluctuations along the field H. 
Generalizing the dynamic-scaling hypothesis1 to the 
case of nonzero magnetic fields, we can write for each 
of these functions by analogy with (5) the expression 

G A ( ~ ,  x ,  W ,  H ) = G o A ( ~ ,  x ,  H ) F l ( q / x ,  w l Q , ( x ) ,  g p H I Q . ( x ) ) ,  (6) 

where X denotes "+ -", "-+ ", or zz.  

The static Green functions G, can be represented in 
the form 

For H = 0, the functions g,(q/u) =g(q/x). As i s  well 
known,14 the g, can be expanded in series in powers of 
[ g p ~ / ~ , ( ~ ) l  in weak fields, i.e., when gpH << O,(x). 

Let us elucidate the behavior of the quadratic (in the 
field) correction to G, a s  a function of q and x. For 
this purpose, let us note that the first  term of the ex- 
pansion of G,(H) in powers of Hz i s  connected a s  fol- 
lows with the fourth-order vertex part y4(q, x), in 
which two momenta a re  equal to q and the two others 
a r e  equal to zero: 

C O A ( P ,  x ,  H ) - G o ( q ,  x ,  0 )  = ( g p H ) Z G o Z ( q ,  X ) G , ' ( ~ ) F ~ ~ ( ~ ,  x ) .  (8) 

As is well known, for q<< x, Ya -T,(ua), and the dif- 
ference 

G,,(H) -Go ( 0 )  a ( g p H / Q e ( x )  1'. 

If, on the other hand, q >> u, then, according to the 
Polyakov correlation-coalescence principle1= (which i s  
equivalent to the Polyakov-Kadanoff operator alge- 
bra14), 

T r i ( q ,  x )  - ~ , ( q a ) ' " ( x a ) " ' .  (9 

It follows then from (8) and (9) that 

It i s  easy to see that, in the region q>>x, each term of 
the expansion of G,(q, H) in powers of [ q p ~ / ~ , ( ~ ) ] 2  
has a factor of the order of ( x / ~ ) ~ / ' G , ( ~ )  attached to it. 

The static Green functions a re  regular in 7 (see Ref. 
14) in strong fields, i.e., when gpH >> Sle(x), and also 
in q2 when gpH >> S2,(q). Therefore, for q, u<< u, [which 
is equivalent to the inequalities gpH >> Sl,(q), Sl,(n)l, the 
functions gk(q/x, x,/x) from (7) can be written in the 
form of the expansion: 

where g,, g,,, and g2, a re  numbers of the order of 
unity. Let us note right away that, since by definition 
xOII = aM/aH, while &,= M/H, then g, = 5goll. 

In the other limiting case of a strong field, when 
<< nH<< q, instead of the formulas (10) or ( l l ) ,  we have 

g* ( q l x ,  X H I X )  = ( 1 ~ x 1 ~ ) '  (go i+g ,k (xH/q)  ",+ . . .). (12) 

Let us now consider the behavior of the Green func- 
tions in a field when the w ' s  a re  nonzero. First of all, 
i t  is necessary to take into account the fact that the 
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component of the total spin along the direction of the 
field i s  conserved in the exchange approximation. This 
leads to the occurrence of an undamped homogeneous 
precession, i.e., a t  q = 0 

(S* )  
G+- ( o ,  H )  = - = - Go, ( H )  

~ P H  
o-gyI I+ is o - g i ~ f i s  ' 

G - + ( o ,  H )  =G+- ((0, - H ) .  
(13) 

At the same time, on account of this same conservation 
law, for w + 0 and q = 0, the longitudinal function 
GI, (0, w, H) = 0. 

Requiring that the expression (6) for the Green func- 
tions in a field coincide with the formula (5) when H 
= 0 and with the formula (13) when q = 0, we write i t  in 
the following form: 

where I?+. = r,, in zero field. 

It will be shown below that, because of the interaction 
of the hydrodynamic modes, the dependence of the func- 
tions r, in weak fields on gpH/a,(x) is, in contrast to 
the corresponding dependence of the static functions, 
generally not regular. In strong fields the quantities 
r, can be expanded in a regular fashion in powers of 
the small parameter T ( T , / ~ ~ H ) ~ / ~ ,  and depend only on 
H in the first-order approximation. 

Let us consider in detail the behavior of the functions 
r, in the hydrodynamic region q << x, w << ne(x). In this 
region, guided by scaling considerations, and knowing 
the limiting values of I?, for H = 0, we can write 

where D(x) i s  the coefficient of spin diffusion. Fi rs t  of 
all, it i s  not difficult to verify that in weak fields the 
dependence on q of the dynamical factor of the Green 
functions is  determined by the spin diffusion, i.e., in 
the first  approximation the dependence of d, on H and 
w i s  insignificant, and d, = d,(O, 0) = 1, This i s  due to 
the fact the spin-diffusion coefficient i s  determined by 
the region of characteristic frequencies w - Qe(n) and 
momenta q - x ,  which, in the first  approximation, i s  
negligibly affected by weak fields. In fact, this is a 
basic result concerning the dynamics in weak fields. 

Let us now give the first  few terms of the expansion 
of the 4 in weak fields and explain their physical 
meaning: 

Here the d,,,, a r e  real  numbers of the order of unity, 
and i t  can be concluded from the requirement that the 
excitation energy be positive that do, > 0. The term 
linear in H in the expansion of d,. clearly corresponds 
to the consideration of the spatial nonuniformity of the 
precession. Its appearance can most easily be under- 

stood on the basis of the molecular-field approximation 
if we note that the term corresponding to it in the ex- 
pansion of D+- i s  

D ( x ) g y H I P ,  ( x )  -T,az(S,). 

Let us emphasize that the nonuniformity of the preces- 
sion i s  much weaker than the diffusional damping. 

The terms in 4 that a r e  proportional to Hz correspond 
to a slight renormalization of the spin-diffusion coeffi- 
cient in a field, while the o-dependent terms determine 
the frequency dispersion of D,. The irregular charac- 
ter  of the dispersion i s  due to the contribution to D, of 
the interaction of the hydrodynamic modes (14), (15) 
[with allowance for (16)-(18)l. The corresponding cor- 
rections can be obtained by the same procedure used in 
Ref, 17 (see also Ref. 18), where the frequency disper- 
sion of D(w) in zero  field i s  analyzed. It can be seen 
from the expression (17) that the irregularity of the 
dispersion leads to irregular dependence of D+- on the 
magnetic field. 

It should be noted that Vaks et aZ.l9 have found the 
spatial dispersion and the damping of the precession 
above T, to occur in the molecular field approximation. 
In this case for q f 0 the damping in weak fields in the 
hydrodynamic region turns out to be  proportional to 
H-=, which does not allow passage to the H = 0 limit. 
The point i s  that Vaks et aZ.l9 chose a s  the zeroth ap- 
proximation the undamped precession with a variance 
(S,)q2, which exists only a t  HPO. The damping, which 
was computed within the framework of perturbation 
theory with the use of a long interaction range a s  a pa- 
rameter, arose a s  a result of the scattering of these 
"precessional" modes by each other. But we should, 
in considering the critical dynamics in weak fields, 
take account of the spin diffusion, which occurs in zero 
field. Therefore, it i s  natural to proceed from the dif- 
fusionally-damped-uniform-precession approximation. 
Then we arrive at the described picture of the hydro- 
dynamics in a weak field. 

In a strong field, the hydrodynamic region i s  defined 
by the condition q << n,. Naturally, we should first  of 
al l  consider the field dependence of dl, for w = 0 in the 
case of the longitudinal Green function GI, and the H de- 
pendence of d+- for w =gpH in the case of the transverse 
function G+-. The asymptotic forms of the functions 
d, [ g j ~ ~ / ~ , ( x ) l  from (16) a re  such that in strong fields 
D, does not to first  order depend on 7, i.e., 

where &(T)  i s  a regular - function of 7 ;  the ail, a r e  real  
numbers, while the d,,. are, generally speaking, com- 
plex numbers. 

Thus, the dynamical factor of GI, i s  determined by the 
spin diffusion both in weak and in strong fields. But now 
the spin-diffusion coefficient depends only on the field 
in the first  approximation. We shall not discuss the 
weak frequency dispersion of r,,(w) here. Concerning 
I'+-, we should make two comments. First, as  a result 
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of the fact that the do+_ a r e  complex quantities, the 
orders  of magnitude of the spatial dispersion and the 
damping of the precession a r e  found in Ref. 19 to be the 
same, being given in the f i rs t  approximation by 

Secondly, since the characteristic critical-fluctuation 
energy ~,(n,a)~/~- 'gp.H in a strong field, the frequency 
dependence of r,-(w) i s  important in the region w -gpH 
(cf. the analysis in Ref. 17). But near the w=gp.H reso- 
nance for q<< n,, both the damping and the spatial dis- 
persion a re  small in comparison with gkH, and there- 
fore we shall not discuss the w dependence of r+_ here. 
Let us note that similar results a r e  obtained in Ref. 19 
for the high-field I',.. for ferromagnets with a large in- 
teraction radius. 

Let us now elucidate the behavior of the Green func- 
tions in the critical region q >> x .  Fi rs t  of all, let us 
note that in this region the relations gpH << r ( q )  
- ~ , ( q a ) ~ ' '  a r e  always valid in weak fields. Further- 
more, there exists a strong-field region, x << n, << q, 
in which gp. H is small compared to r(q),  and the Green 
function (14) can be  expanded in powers of H. Limiting 
ourselves to the linear approximation, we have for 
G+-(q, w, H) in a weak field the expression 

where yj.- i s  the third-order dynamical vertex with 
two coinciding frequencies and momenta, introduced in 
Ref. 20 (see also Ref. 13). Using the correlation-co- 
alescence principle a s  generalized to the case of the 
dynamical vertex and the dynamic-scaling hypothesis, 
we find for F3 in the case in which q >> x the expres- 
sion20, 2 1  

0 0 s,"- (q, x, o) =T,- -) (qa)ci*xa, 
Qe(q) ys ( Qe(q) 

Here y,(O) is a real  number; the factor cl~/Ct,(q) has been 
separated out a s  a result of the dynamical character of 
the vertex (T, = 0 at w = O), while the factor qlf 'x i s  due 
to the correlation-coalescence principle. 

By comparing the expressions (20) and (21), we find 
the correction to r,.. in H: 

where y,-(0) i s  a rea l  positive number. The sign of 
y+-(0) can be determined from the requirement that the 
excitation energy be positive. 

A natural generalization of the formula (22) to the en- 
t i r e  field region gpH << n,(q) i s  the following expression: 

(23) 
which assumes in strong fields for which u<< x, <<q the 
form 

We can verify in exactly the same fashion the fact that 
in weak fields the H-induced correction to  r,, is pro- 
portional to 

[cf. (22)]. Here, a s  before, the factor q /n  ar ises  a s  a 
result of the correlation-coalescence principle. In 
strong fields for which n, << q, the formula (24) i s  valid 
for r, provided the function 9,- i s  replaced by p,,. If, 
on the other hand, the field i s  so  strong that gbH 
>> Ct,(q), i.e., if n,>>q, then we return to the above- 
considered case of hydrodynamics in a strong field. 

3. CRITICAL DYNAMICS IN A MAGNETIC FIELD 
WITH ALLOWANCE FOR THE DIPOLE FORCES 

Thus far, in discussing the picture of the critical phe- 
nomena in a magnetic field, we have assumed that the 
spin-spin interaction in a ferromagnet is a purely ex- 
change interaction, i.e., we have neglected the term 
x6, (4b), in the Hamiltonian (4). The dipole-dipole 
magnetic interaction energy in magnets is, a s  a rule, 
small compared to the exchange energy. But if we con- 
sider the dynamics of sufficiently long-wave excitations, 
we cannot completely neglect the dipole forces. Indeed, 
in contrast to the exchange forces, the dipole forces 
do not conserve the total spin of the magnet, and, thus, 
ensure the relaxation of the magnetization fluctuations 
and the eventual dying down of the precession in the q 
- 0 homogeneous limit. Furthermore, since the dipole 
interaction i s  anisotropic, i ts  consideration leads to the 
anisotropy of the fluctuations even in zero field. Final- 
ly, because of the fact that the dipole forces a re  long- 
range forces, there ar ise  demagnetization effects, a s  a 
result of which the susceptibility of a body, i,,, differs 
from the susceptibility of the material, x,,, and the in- 
ternal magnetic field H does not coincide with the ex- 
ternal field He,. 

As i s  well k n ~ w n , ~ * l ~  when allowance i s  made for the 
dipole interaction, the Green function Go,, (3), satis- 
fies the relation 

where n=qq-' and G:,' possesses the symmetry of the 
original Hamiltonian without the dipole forces, and i s  
proportional to the magnetic susceptibility of the ma- 
terial  y.,,: oo~,$ '= ~ITX,,. In the q - 0 homogeneous 
limit, the tensor n,n, (for a body of ellipsoidal shape) 
goes over into the tensor whose elements a r e  the de- 
magnetizing factors N,,. 

Solving Eq. (25), we obtain 

The internal magnetic field H i s  connected with the ex- 
ternal field He, also by the well-known relation 

It i s  shown in Ref. 3 that, if 4nxO<< 1, then we can take 
the dipole forces into account with the aid of perturba- 
tion theory when computing the dipole-induced damping 
constant ro. Then, according to Ref. 2, 
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where q, - ( w , / ~ , ) ~ ~ ~ a - ~  is the characteristic dipole mo- 
mentum, which i s  determined from the condition 
4nxo(q0) = 1. Since the diffusion-induced damping and 
the dipole-induced relaxation a r e  relatively independent, 
when the dipole forces in a weak field a r e  taken into ac- 
count, we have for the I?, in place of (16) the expres- 
sions 

where, to f irst  order in W / Q ~ ( ~ )  and gp~/52,(x), the 
damping constant 

The allowance for the dependence of r, on w and H will 
be discussed in detail in the following section of the 
paper; just now let us proceed to consider the dipole 
region, where 4nx0 >> 1 ( u  << q,). To begin with, let us 
recall the situation in the case of zero  field3 According 
to the formula (26), when n << qq,, the anisotropy of the 
Green function i s  substantial, only the components of 
the function that a r e  perpendicular to the momentum 
q (for q - 0) now becoming infinite at 7 = 0. Further, 
from the analysis performed in Ref. 3 we can obtain the 
following expression for the characteristic energy with 
allowance for the dipole scaling: 

where a and /3 a r e  numbers of the order of unity, and, 
clearly, in the limit T - T, (for q = 0) 

Nevertheless, if /3 << a2, then the so-called normal 
dipole dynamics with a dipole energy 52, - xi1 will be ob- 
served in real experiments in the temperature region in 
which (a2//3 )q: << n2 << q:, i. e., in the region not too 
close to T,. And only when x2 << ( ~ ~ / / 3 ) ~ :  will the dipole 
energy be given by the formula (30), i.e., will the dy- 
namics become rigid. It i s  possible that Shiino and 
~ a s h i m o t o ~ ~  observed in their investigation of the longi- 
tudinal relaxation in EuS the beginning of the transition 
from the regime of normal dipole dynamics to the rigid 
dynamics regime. 

The bases for the existence of the inequality /3 << a2 a r e  
the following. The term with /3 in the formula (29) oc- 
curs because of the allowance for the contribution to 9, 
of the processes of rescattering of the critical fluctua- 
tions by each other, and therefore should, a s  noted in 
Ref. 3, contain a numerical smallness. Furthermore, 
i t  i s  shown in Ref. 21 that, because of the presence of 
three-point correlations, the critical dynamics should 
depend on the magnitude of the atomic spin S. And since 
the rescattering due to the three-point correlations i s  
suppressed a t  large S values, the region of normal dy- 
namics in ferromagnets with small S should be  narrow- 
e r  than in the S >> 1 case. 

Let us now give the expressions for the P;'l '(H) in a 
weak field. Since in the dipole region a,(%) << Sld(x) and 

gpH should be  comparable to ae(x) ,  gpH <( nd(n)  all the 
more in a weak field, and for the rl1) we have 

Here r ( x ,  0,0) and I 7::) (o)l- yl,l '(0) - 1. 

If u << q << go, then, using the correlation-coalescence 
principle for the third-order vertex, we obtain in place 
of (23) the formulas 

""" (2) (&)}, r f !  ( q , a , ~ i ) = r ( ~ , ~ ) ( i + -  q  
(334 

~ P H  
r ~ ' ( q , a , ~ ) = I ' ( q , m ) { i +  (T)'( Q ( )  +)ah (A)} 

Qd(q) (33b) , 
Notice that this behavior of r i ! ' (~)  guarantees the pos- 
session of a small peak by GI!) a s  a function of H at 

if q << u and w << r ( u ,  O), or a t  

Qe(x )  q  '1. 
gpH-o -- 

LC ( x )  (T ) 
if u << q <<go and w << r (q ,  0). The nature of the tempera- 
ture dependence of this peak i s  connected with the form 
of the characteristic critical-fluctuation energy in the 
dipole region, and i s  determined also by the correla- 
tion-coalescence principle for the third-order dynami- 
cal vertex when n << q. 

In a strong field the situation i s  entirely similar to the 
situation considered above in the exchange case. If 

then n in the formulas (33a) and (33b) should be re- 
placed by x ,, while for g,> x,> q the functions a r e  
given by the formulas (31), (32), in which n should also 
be replaced by x,. Further increase in the field should 
take us from the dipole regime to the high-field ex- 
change regime. 

4. PARAMAGNETIC RESONANCE AND 
LONGITUDINAL RELAXATION IN THE CRITICAL 
REGION ABOVE T, 

Paramagnetic resonance in ferromagnets and longi- 
tudinal relaxation in a magnetic field in the critical re- 
gion have been quite intensively studied in experiments 
(see, for example, Refs. 6-10), But thus far no detailed 
theoretical discussion of the homogeneous dynamic sus- 
ceptibility in an external field has been published. The 
aim of this section i s  to consider this question. 

As a rule, in experiment we measure the susceptibili- 
t y  Xu, of a body and control the external field He, ap- 
plied to the sample. But of physical importance a re  the 
internal field H and the susceptibility of the material 
xUg, which, because of the demagnetization effects, 
differ from He, and Rag. We shall discuss the effect of 
the demagnetization below; for now let us consider the 
behavior of x,, a s  a function of H and 7. 

As in the preceding section, we represent the longi- 
tudinal and transverse susceptibilities in the following 
form: 
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g p H - i r + -  ( T ,  o ,  H )  . x+- ( r ,  a, H )  =-x ( 
O1 " H ,  o - g p ~ + i r + -  ( r ,  o ,  H ) '  

where the X, a r e  the static susceptibilities and r,(w, H) 
is the critical-damping constant; at w = 0 and H = 0 the 
real  positive quantity r,(0, 0) = roo 

Let us first  consider the behavior of x,(w, H) in the ex- 
change region 4nx0,(r, H) << 1. Then, a s  has already 
been noted above, in the case of small frequencies and 
weak fields, i.e., for w,gj~H << n,(x), we have in the 
first  approximation x,= and I',-w~T;~T-'. We can 
then expand the & (7, H) in a regular fashion in powers 
of [ g ~ ~ / ~ , ( x ) ] 2 .  It i s  clear that under these conditions 
the power ser ies  expansion of r,(w,H) in w/n,(x) and 
gpH/n,(x) contains regular terms. But, a s  we shall 
now verify, the dependence r,(w, H) in the region of low 
frequencies and weak fields is determined by the pres- 
ence of spin diffusion in the system, the corrections due 
to the spin diffusion exceeding the regular terms of the 
expansion and being irregular when r, 5 w and ~ F H  
<< n,(x). 

To compute the w, H), let us  use the generaliza- 
tions to the nonzero-H case of the well-known formulas 
for r in the exchange region3: 

where w,G, =4ax, and for @, we have 
m 

Q , , ( o ,  H )  = i l  dteqW'( [ S O a ( t ) ,  SoB(0) 1). (37) 
0 

It i s  necessary to represent the expression for the 
r,(w, H) in the form of the following two diagrams: 

where the lines correspond to the Green function; the 
vertices, to the operator .$:; and the hatched block, to 
the total four-particle vertex .T4. 

In Ref. 3, i t  i s  shown in the course of the determina- 
tion of r, that the diagram (39a) and the diagram (39b), 
which takes the rescattering into account, have one and 
the same order of magnitude, and that they add up to 
r,. Below we shall verify that the dependence of r, on 
H and w is determined by the diagram (39a) only, and 
that the contribution from the rescattering i s  small. 
Using the results of Ref. 3, we obtain after simple 
computations the following expression for the r,(w, H) 
from the diagram (39a): 

i r ,  
GP(a)=Gq(O)  - 

~ + i r ,  ' 

(43) 

The damping constant r, is, generally speaking, a 
function of H and w. But, since here we a r e  interested 
in the small  H- and w-related corrections to r,, it  i s  
not necessary to take into account the dependence of I?, 
on w and H in the Green formulas (42) and (43). It i s  
easy to see  that the dominant contribution to the x,, x,, 
and q integrals for Z(w) -Z(O) i s  made by the hydrody- 
namic region q << x, xl, X, << n,(x), in which r,= Dq2 + r,, 
where D - ~ , ( x a ) ~ ~ ~ a ~  is the spin-diffusion coefficient. 
Substituting (43) into (42), we have 

According to the formulas (44), (40), and (41), the 
corrections to the r, a r e  complex. For the transverse 
susce-qtibility this implies the appearance of both a 
resonance-frequency shift Aw, and a correction 
to the damping constant; for the longitudinal suscepti- 
bility, the appearance of dispersion in r,,(w, H). From 
the expressions (44) and (40), (41) we find that 

It can be seen from the formulas (45)-(48) that the 
corrections Ar, ,  Awl D - ~ /  2; therefore, their experi- 
mental study allows us, in principle, to determine the 
spin-diffusion coefficient. It also follows from the ex- 
pressions (45)-(47) that the resonance frequency in- 
creases with increasing field intensity, whereas the 
line width and the longitudinal relaxation, which i s  de- 
termined by Rer,,(O, H), decrease. 

The corrections A r ,  and Aw, increase with increasing 
w and H, and depend on w and H in the region 

G o ,  g p H K Q . ( x )  

in an irregular fashion. Noting that 

we can determine their orders of magnitude: 

The terms obtained in the expansion of r, a r e  greater 
than the regular corrections: 

A ~ ~ / g p H - ~ ~ / Q e ( x ) ,  A r ~ / I ' ~ - ( g p H l Q ~ ( x )  ) 2 .  
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Let us also note that, a s  follows from the formula (47), 
r (w)  undergoes dispersion in zero  field, and that this 
dispersion has an irregular character in the region r, 
s w << a,(%). 

It must be said that the structural corrections of (45)- 
(48) occur not only in ferromagnets in the vicinity of 
T,, but also in all  magnetic systems in which spin dif- 
fusion occurs together with the homogeneous dipole re-  
laxation. Similar phenomena occurring in quasi-two- 
dimensional systems a r e  being intensively studied (see, 
for example, Ref. 23). 

Let us now consider the diagram, (39b), taking ac- 
count of the rescattering, To begin with, let  us note 
that, if we neglect the dependence of Y4 on the momen- 
tum k, - k,, then the diagram vanishes. Indeed, in that 
case the angle integrations a t  the two dipole vertices 
can be performed independently, and the operator S: 
integrated over the angle i s  equal to zero, To deter- 
mine the nonzero contribution, i t  i s  sufficient to expand 
r4 in powers of (k, - k , ) 2 ~ - 2  < 1, and estimate the con- 
tribution from the f i r s t  nonvanishing term of the expan- 
sion, this term being proportional to (k,. k,)2n-4. Here 
i t  i s  f irst  of all necessary to determine the contribution 
of the diagram with w- and H-dependent two-particle 
intermediate states, e.g., with the w- and H-dependent 
functions G,,. As shown above, in this case the low- 
momentum (k, << n) and low-frequency [w, << CZe(u)1 de- 
pendence of G,, i s  important, and therefore the integral 
of Gi1Y4 over k, can be estimated, using the static Gkl 
and 7''. This integral i s  determined by the region k, 
- w., where Y4- u, and is in order of magnitude equal 
to unity. The remaining integral over k,, in compari- 
son with the contribution (44) of the diagram (39a), con- 
tains the  factor k ; ~ - ~ ,  which derives from the factor 
(k, k,)2~-4(kl x). Therefore, taking account of the 
fact that the characteristic k, - max(w, r,)U-l, we find 
that, a s  compared to the diagram (39a), the contribu- 
tion from the rescattering will a t  least be of the order 
of max(w, r0)/CZe(u) in smallness, It i s  not difficult to 
verify that the diagrams with w- and H-dependent 
many-particle intermediate states will make even 
smaller contributions. Thus, the expressions (4 5)- 
(48) completely determine A r ,  in the region w, gpH 
<< S2,(x). But when w or gpH has the same order of 
magnitude a s  CZ,(x), all the corrections to r, a r e  im- 
portant, and we do not have a simple expression for 
r, (w, HI. 

As has already been discussed above, in a strong 
field, all the physical quantities depend only on the 
magnetic field. In particular, 

In this case the I',(H) a r e  given by the expression for 
r, with W. replaced by u,. Then r,,(O, H) i s  real, r+-(H) 
has a real and an imaginary part of the same order of 
magnitude, and 

It can be seen from this expression that gkH >> r,,(0, H), 
I r,-(H)( , and that, a s  the field intensity increases, the 
resonance line narrows down and the longitudinal ab- 

sorption decreases, It is not difficult to show that in 
this case r , ( ~ ,  H) can be expanded in a regular fashion 
in a ser ies  in powers of the small parameter T(T,/ 
g ~ ~ ) 3 / 5 .  

Let us  discuss in greater detail the behavior of 
r ,(r ,H) in the entire transition region from weak to 
strong fields, excluding the above-considered case of 
very weak fields, i.e., assuming that gfiH >> 1 r , ( ~ ,  H)I . 
Here we shall, in considering x+-(w), be  interested in 
the neighborhood of the resonance frequency w = w, 
=gpH; in considering x,(w), in the frequencies w 
<< 52,(7, H), neglecting the slight frequency dispersion 
of l?,(w). Then, using perturbation theory in terms of 
w, and the scaling hypothesis for the case of a nonzero 
field, we obtain for r, the expression 

The imaginary and real  parts of l?+-(7, H) determine 
respectively the resonance-frequency shift and the line 
width The function r,,(7, H) i s  rea l  and determines the 
longitudinal absorption. In fact, above we found the 
asymptotic forms of y,(x) for x<< 1 and x>> 1. 

Let us discuss the behavior of the damping constant 
Rer,  a s  a function of 7 in a fixed field, bearing in mind 
the experimental investigations reported in Refs. 8 and 
11. It i s  clear that the damping first  increases with 
decreasing 7, and then this growth i s  restrained by the 
field. And since there i s  one characteristic variation 
scale T -h3/ 5, i t  is natural to suppose that the damping 
either remains a monotonically increasing function 
right down to 7 = 0, o r  has a maximum at  7 - h3l5. We 
cannot say which of these possibilities is realized, 
since it i s  not possible to compute the sign of the de- 
rivative 

at T = 0. The most interesting situation i s  the one in 
which the behavior of the damping constant is nonmono- 
tonic, especially a s  we can assume on the basis of the 
experimental investigations reported in Refs. 7, 8, and 
11 that i t  i s  precisely this situation that is  realized, 
The necessary condition for a maximum can be written 
in the form 

On account of (46) and (49), for x>> 1 

where c,, > 0. If, on the other hand, x << 1, then, a s  
follows from (50), Rey, (x) - x. It i s  clear that, since in 
these limiting cases, Rey; > 0, while Rey, ( x )  i s  positive, 
this equation can have a solution a t  7 > 0, 

The position of the maximum of the damping constant 
and the behavior of this constant at the maximum a s  7 

and h a r e  varied a re  determined in the following man- 
ner: 

The experimental verification of these two consequences 
would be of great interest. 
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Let us now briefly discuss the dipole region, where 
4ah >> 1. The behavior of r, in weak and strong fields 
in this region has already been considered in the pre- 
ceding section [see (31), (32)]. Therefore, here we 
shall limit ourselves to making only some additional 
remarks. First  of all let  us note that in the dipole re-  
gion, in contrast to the exchange region, for q << x the 
dependence of the dynamic susceptibility on q i s  unim- 
portant. As a result, the regular expansions (31), (3 2) 
for  the r, a r e  valid in a weak field. 

In the dipole region, even in a strong field, the char- 
acteristic energy S2,(H) > g p H .  At the same time 

Therefore, here the resonance frequency i s  lower than, 
o r  of the order of, the damping constant. Let us empha- 
size again that we a r e  talking about the susceptibility of 
the material, and not about the directly measurable sus- 
ceptibility of a body. Finally, the dynamic part of the 
susceptibility in the dipole region cannot have the LO- 
rentz form both for H = O (Ref. 3) and for H # O. In other 
words, the dispersion of r,(w) should be substantial. 
Such dispersion in zero field has been experimentally 

In conclusion of this section, let us, with magnetic- 
resonance experiments in mind, express the mea- 
surable susceptibility L, of a body in terms of the sus- 
ceptibility x,, of the material. Let us consider a body 
having the shape of an ellipsoid with the principal axes 
along the coordinate axes, and let  us orient the ex- 
ternal constant field along the z axis. Then, since X, 
= X,, = &,= X, = 0, we have for the longitudinal part i,, 
and the internal field from (25) and (27) the expressions 

Further, taking account of the fact that x,,(w) = ~ ( w )  
and x,(w) = - &,(w), we easily obtain the transverse 
elements of the tensor: 

Taking account of the fact 2&, = X,.. + X-+, 2i&, = X-, 
- x+-, and using the formula (35), we obtain 

D= [(o+ir,)'- (gpH)Zl-L{(o+i~l)Z-(gpH)Z-4n~0,(N.+NU) [ (gpH) ' 
+ r,2-iI?Lol - (4n~~,)~N,N,[(gpH)~+r,~]}. 

(57) 
Here r, = Rer,_, and we have for convenience introduced 
the renormalized q-factor value: 

From (57) it is easy to find the resonance frequency 
>, and the damping constant F,: 

These expressions for the ellipsoid of revolution get 
greatly simplified when N, = N,, =N, : 

The expressions (59) and (60) differ from those obtained 
in Ref. 24 in that they contain the renormalized g factor, 
2, which, a s  we have seen, depends on the temperature 
and the magnetic field. 

As has already been repeatedly noted, the quantity r,, 
a s  well a s  2, generally speaking depends on the frequen- 
cy. In the exchange region this dispersion i s  slight, and 
can be neglected in the first  approximation. At the same 
time, in the dipole region the dispersion of r+, i s  im- 
portant, and therefore these expressions can be used 
only to make estimates. 

Finally, i t  i s  useful for practical purposes to discuss 
briefly the connection between the external and internal 
fields in a number of limiting cases. In the exchange 
region H,,=H.  In the dipole region, if the field H i s  
weak and 47rN,~,, >> 1, then 

The condition for the external field to be  weak then has 
the form 

On the other hand, in a strong field in the dipole re- 
gion, if 4nN,x,(H) >> 1, we have 

In conclusion, t!e authors express their gratitude to 
V. N. Berzhanskii for making available to them his ex- 
perimental data on electron paramagnetic resonance in 
the critical region before their publication, a s  well a s  
to E. M. Pavlenko for preparing the article for publica- 
tion. 
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