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The kinetic approach is used to develop a theory of the lattice absorption of acoustic waves in "dirty" crystals, 
which is valid in a wide range of frequencies and which includes the published results and those obtained for 
pure crystals as special cases. The criteria of validity of the Maris theory of the absorption of acoustic waves 
in crystals with impurities are established. It is shown that, when the absorption of acoustic waves is 
dominated by the contribution of phonons of approximately thermal energy, the frequency dependence of the 
acoustic absorption coefficient of dirty crystals is quadratic st low frequencies, disappears at higher 
frequencies, and then becomes again quadratic and linear at the highest frequencies. 

PACS numbers: 43.35.Gk 

The absorption of acoustic waves in ideal insulators the presence of impurities generally alters the frequency 
is due to the lattice anharmonicity and it is  described and temperature dependences of the absorption coeffi- 
in different ways depending on the product of the acous- cient compared with the corresponding dependences in 
tic wave frequency w. and the reciprocal of the phonon the case of a pure crystal. 
relaxation t i d e  T-'. %he absorption of low-frequency 
acoustic waves characterized by w,T<< 1 is governed 
by the Akhiezer mechanism and the absorption coeffi- 
cient is I? a W ~ T .  In the opposite limit of 0,T >> 1 the ab- 
sorption i s  dominated by three-phonon processes and 
the dependences of the absorption coefficient on the 
acoustic wave frequency and on the temperature of a 
crystal a r e  governed by the polarization of the original 
wave, nature of the phonon constant-energy surfaces, 
and anisotropy of the elastic moduli. In the case of 
some simple crystals the expression for the absorption 
coefficient obtained from the theory of Landau and 
Rumer i s  r a W,P (T i s  the temperature of the crystal). 

In the case of insulator crystals with high impurity 
and defect concentrations the nature of the absorption 
may be very different from that in pure crystals. In 
particular, as shown in Refs. 1-6, even when the con- 
dition us?<< 1 is formally obeyed, the absorption in a 
crystal with impurities may differ considerably from the 
value predicted by the Akhiezer theory and the absorp- 
tion coefficient may be much lower than in the case of a 
pure crystal. 

Several authors1+ have considered the case of a cry- 
stal  with a large number of impurity atoms whose role 
reduces to effective phonon scattering and they have as- 
sumed that the corresponding scattering cross  section 
i s  typical of the Rayleigh mechanism. In view of the 
very rapid fall of the Rayleigh scattering cross  section 
on increase in the phonon wavelength, the absorption is 
dominated by a small group of "subthermal" phonons 
which can be identified by the condition w,~,(q,)=l [r,(q) 
i s  the relaxation time of phonons with a quasimomentum 
q when they a r e  scattered by Rayleigh centers] if the 
anharmonicity effects can be ignored or  by the con- 
dition ra(qz)= rf(qZ) (rf i s  the relaxation time in the case 
of phonon-phonon collisions) in the opposite case." 
Clearly, since in both cases we have q l , ~ < q T  (qT i s  a 
typical phonon quasimomentum), the specific heat of 
the absorption-active modes may be considerably less 
than in the case of a pure crystal and the absorption 
coefficient may be small compared with that for the 
same waves traveling in a pure crystal. Moreover, 

In Refs. 4-6 the nature of defects is  not specified 
(in contrast to Refs. 1-3): only the fact that the phonon 
scattering by defects i s  near-elastic i s  regarded as im- 
portant. Moreover, Maris4 assumes that the absorp- 
tion of acoustic waves i s  st i l l  dominated by the thermal 
phonon group, exactly a s  in the case of a pure crystal. 
For this reason the results of Refs. 1-3 cannot be ob- 
tained from those of Maris4 and in fact these two groups 
of investigations deal with two different special cases  
of the absorption of acoustic waves in dirty crystals. 
This shortcoming of the treatment given by Maris4 was 
eliminated by ~ogachev:*~ who retained the dependence 
of the phonon relaxation time on the quasimomentum and 
showed that under appropriate conditions and neglecting 
the effects associated with modulation of the phonon 
temperature (ignored in Refs. 1 and 2) it is  possible to 
reproduce results of Refs. 1 and 2. In this connection 
it should be pointed out that the representation of the 
phonon-impurity collision integral used in Refs. 4-6 i s  
based on the introduction of a temperature T ( w )  for . 
each phonon group associated with a fixed constant-en- 
ergy surface defined by Fzw = const. We shall show that 
this representation i s  valid even in the case of an ex- 
tremely dirty crystal (w,~, - 0, where T, i s  the relaxa- 
tion time of phonons in the case of quasielastic scatter- 
ing mechanisms). For this reason the results of Refs. 
4-6 a r e  of limited validity. 

Our aim will be to develop a theory of the absorption 
of sound in real  insulators covering the widest possible 
range of frequencies and including the main results of 
Refs. 1-6 as well as the results of the Akhiezer and 
Landau-Rumer theories for pure crystals a s  special 
cases. In contrast to Refs. 4-6, we shall use the ex- 
plicit form of the phonon-impurity collision integral. 
This will make it possible to determine, in particular, 
the cri teria of validity of the results obtained in Refs. 
4-6 and to consider a much wider range of frequencies 
where the results of Refs. 1-6 a r e  invalid. 

Let u s  assume that an acoustic wave travels in an in- 
sulator crystal containing a large number of impurities. 
We shall describe the phonon system of a crystal per- 

898 Sov. Phys. JETP 55(5), May 1982 0038-5646/82/05( 1898-06$04.00 O 1982 American Institute of Physics 898 



turbed by sound with the aid of the Boltzmann kinetic 
equation. As shown in Ref. 7 (see also Ref. 81, the 
absorption of acoustic waves in insulators can be con- 
sidered within the framework of the kinetic approach for 
any values of the parameter wsr. The only criterion of 
validity of this approach is the inequality tiw,<< k,  T. In 
the range of acoustic waves and crystal temperatures 
under consideration here this inequality is  satisfied by a 
large margin. 

The absorption coefficient of an acoustic wave consid- 
ered in the linear approximation with respect to the 
sound amplitude can be expressed in terms of a sound- 
induced nonequilibrium correction to the phonon distri- 
bution function7: 

Here q and w, a r e  the wave vector and frequency of the 
incident acoustic wave; J is the wave polarization; 
eAqJ) a r e  the components of a unit polarization vector; 
p and V a r e  the density and volume of the investigated 
crystal; v , (qJ)  is the initial wave velocity; u, is the 
wave amplitude; yPB(kj) is the tensor of the ~ G n e i s e n  
constants for phonons of polarization j and quasimomen- 
tum k; Aw(kj) is  the energy of a (k,j) phonon; AN(kj) 
i s  the nonequilibrium correction to the phonon distri- 
bution function due to the passage of an acoustic wave. 

The problem thus reduces to finding the correction 
AN(kj). This quantity can be obtained by solving the 
Boltzmann kinetic equation 

Here, N i s  the unknown phonon distribution function; Ho 
i s  the Hamiltonian for a (k, j )  mode in the unperturbed 
crystal; u,g(rt) is  the strain vector for the region af- 
fected by the wave; I (N} i s  the phonon-phonon col- 
lision integral; ~ ~ { N r i s  the collision integral represent- 
ing the scattering of phonons by impurities and crystal 
defects. 

We shall select the phonon-phonon collision integral 
in its standard formg and, for simplicity, we shall con- 
sider only the T,<< 7, case (7, and 7, a r e  the charac- 
teristic times for the umklapp and normal processes, 
respectively): 

where n(k, j) is the equilibrium Planck phonon distribu- 
tion function, 

and AT is  the correction to the crystal  temperature, 
which is linear in respect of the acoustic wave ampli- 
tude. The question under what conditions we can in- 
troduce a local phonon temperature will be discussed 
below. 

In contrast to Refs. 4-6, the integral describing col- 
lisions of phonons with impurities will be used in i ts  

explicit form 

but without specifying the scattering mechanism. The 
expression (4) describes in a sufficiently general form 
the quasielastic phonon scattering mechanisms which 
may involve the scattering by impurities, vacancies, 
dislocations, crystal inhomogeneities, etc. 

For the sake of simplicity, we shall assume that the 
wave polarization is not affected by the scattering on 
impurities or  defects. Clearly, this assumption cannot 
alter the results qualitatively. We shall find a solution 
of the kinetic Eq. (2) in the form 

N ( k j )  = n  ( k j )  +AN ( k j )  exp [ i (qr-met)]  . (5) 

Again for simplicity, we shall consider an isotropic 
case on the assumption that a crystal i s  elastically iso- 
tropic and, moreover, that ~ ( k j )  and y,(kj) depend only 
on the modulus of k. The problem of absorption of 
transverse sound in cubic crystals requires a spe- 
cial study. In fact, in the case of cubic crystals the 
tensor yaB(w) = ((yaB(kj))) is diagonal. Here, 

In the case of shear waves traveling along high-sym- 
metry directions we have y,(w) = (G,(kj))) = 0. We shall 
return to this case later. 

We shall transform the collision integral Ifd{N} to 
(see Ref. 10) 

J do' sin 0'dqrS(8cp; o'cp') AN(kj,  8') 

To do' sin Ofdp'S(Orp; 0'q') 

Here, 7;' i s  the reciprocal of the relaxation time for the 
scattering of phonons by impurities; S(Bcp; 6"rpf) i s  the 
cross  section for the scattering of a phonon correspond- 
ing to a constant-energy surface with a quasimomen- 
tum k from a state (Oqp) to a state (8'rpf). The system 
(6) i s  derived bearing in mind that in the isotropic case 
the distribution function U ( k j )  depends only on the co- 
sine of the angle 0 between the vectors k and q.2' 

It is more convenient to introduce a new as yet un- 
known distribution function F,(z) related to the function 
W k j )  by 

The kinetic Eq. (2) modified by Eqs. (3)-(7) becomes 

Here, ~;k= 7i1+7t1; P,(5) i s  a Legendre polynomial of 
order n; Sn is the n-th coefficient in the series expan- 
sion of the quantity 5 (cosS)=S(Ocp; 0'40'); in terms of 
Legendre polynomials; 9 is the angle between the vec- 
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tors k and k'. 

We shall assume that the dispersion law of phonons i s  
linear, i. e. , that w(kj) =v,(kj)/k. We shall introduce 
the quantity 

where a,,= v,(j)/v,(J). The final form of Eq. (8) i s  then 
1 

F ~ ( ~ ) - - A  J a t ~ ( z t ) ~ , ( t ) + ~ , ( z ) .  
-L 

(9 

The following notation is used above: 

h a ( k f )  1 AT i q 0 k j )  ( k )  1 
Mu(z)-----+ 

~ O . . S P I ~  wto-z T ~ J J  Wto-z 

Equation (9) for the unknown distribution function 
l;;,(z) i s  s linear Fredholm integral equation with an 
infinite degenerate K(zg) .  In order to find the required 
absorption coefficient, we shall need the quantity 

1 '  
F:' = I J &Fw(t) .  

-1 

The procedure fo r  finding a solution of Eq. (9) for the 
quantity F:' i s  fully analogous to the corresponding 
procedure in the problem of electron absorption of 
acoustic waves in semiconductors a t  "intermediate" 
frequencies.'' The final expression for F,:' is  

where 

As in the problem of electron absorption of acoustic 
waves in semiconductors at intermediate frequencies, 
the answer in the present case can also be expressed 
in terms of a continued fraction B with a structure in 
many respects similar to that of the fraction studied 
earlier. The quantities wf, occurring in Eq. (11) a r e  
described by 

and {T,} i s  a sequence of relaxation times of harmonics 
of the perturbed phonon distribution function 

We now have to determine A T / T .  Obviously collis- 
ions do not alter the total energy of the phonon system, 
i. e., 

z a o ( k j )  I { N ( ~ ~ ) ) = o .  (12) 
u 

Since collisions of phonons with impurities and defects 
a r e  assumedto be quasielastic,we can rewrite Eq. (12) 
in the form 

Using now Eqs. (3), (5), (71, (lo), and (131, we obtain 

AT -- (v, (kj) ~ ; l  (kj) ~ O , T O  (kj) [I - ~ @ , . S O  (kj)  aGB (kj)]-l) 
-Quo (t;' (kj) {I + 70 (kj) ~ ; l  (kj) [I - iaBro (kj )  a,, B (kj ) ] -I ) )  ' (14) 

The kinetic averaging (. . . ) means 

We shall introduce 

Using Eqs. ( I ) ,  ( lo),  (14), and (15), we finally obtain 
the following expression for the "lattice" acoustic ab- 
sorption coefficient : 

1 <y . (k j )  7 , - ' (k j )P ( k j )  )' -- - 
o. ( z t - ' (k j )  [ l + P ( k j )  / i o . r f  ( k j )  1) 

where C, i s  the specific heat of a crystal. 

We shall now consider a number of special cases. 

1. In the case  of a pure crystal (rO>>rJ, we have 

and the continued fraction in Eq. (15) i s  easily summed": 

Using Eq. (171, we can easily demonstrate that Eq. (16) 
for the absorption coefficient gives the correct result 
for the absorption of both low-frequency (w,T<< 1, the 
Akhiezer case) and high-frequency (w,T>> 1, the Landau- 
Rumer case) acoustic waves in pure insulators. 

2. We shall now assume that roc< rf; moreover, we 
shall postulate that w,r0<< 1 (strong scattering by im- 
purities). Clearly, the w,T,>> 1 case i s  of no real  in- 
terest  because the influence of impurities on the ab- 
sorption of acoustic waves in this limit, considered 
within the framework of the adopted approximations, 
is  solely due to the changes in the elastic moduli and in 
the density of a crystal. We shall begin by postulating 
that warf >> 1. We shall then consider two limiting 
cases: a )  wtr0rf<< 1; b) W:T~T~ >> 1. 

a. Let W ~ T , T ~  << 1. Using Eq. (111, we obtain 

Assuming, for simplicity, that T, i s  independent of (kj), 
we obtain 

which i s  identical with the result obtained by Maris4 ( s e e  
also Refs. 5 and 6). 

We can see  that the criterion of validity of the Maris 
theory is wtr0rf<< 1. When this condition is satisfied 
there is a local coupling between the response of the 
phonon system and a perturbation [us( T,,T,)' is  the 
characteristic length in which the phonon energy changes 
significantly]. Such local coupling clearly occurs if this 
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length is considerably less than the wavelength of sound. 
Then at each point in a crystal we can introduce a temp- 
erature for each group of phonons associated with a 
specific constant-energy surface and to use the phonon- 
impurity collision integral in the form 

Ro(kj; rt) -1 

N'(k')- Iexp XBT(o(kj; . I ) )  - '1 
b. In the opposite limiting case of w;7,rf >> 1 (al- 

though we still have w,r,<< l )  the results of the theo- 
r i e s  of Refs. 4-6 a r e  invalid. Under these conditions 
we have 

It should be pointed out that the concept of a local 
phonon temperature can be introduced only if W;T,T~ 

<< 1. In the opposite limiting case this concept clearly 
loses its meaning. Moreover, using Eqs. (18) and (20), 
we can easily show that AT/T found from Eq. (14) does 
not tend to zero on increase in the parameter w]rOrf. 
However, it should be pointed out that if W;T,T, >> 1, the 
contribution of the term in the nonequilibrium phonon 
distribution function due to modulation of the phonon 
temperature [even when AT/T i s  given by Eq. (14)] to 
the ra te  of entropy generation it is  small, when judged 
on the basis of the parameter (w:rOrf )'I<< 1 ,  compared 
with the contribution of the term due to modulation of 
the energy k / w  ar yaBumB of phonons in the field of an 
acoustic wave. In fact, the contributions of both terms 
to r a r e  represented respectively by the second and 
first terms in the braces in Eq. (16). Using Eqs. (18) 
and (20), we can easily show that the second term in 
Eq. (16) is  small compared with the first when judged 
on the basis of the parameter (w;r0rf)-'<< 1. For this 
reason the expression (16) for the absorption coefficient 
of an acoustic wave is valid throughout the range of fre- 
quencies in which we can use the kinetic approach, with 
the exception of the direct vicinity of the frequency w ,  
= ( T ~ T ~ ) - ' / ~  where Eq. (16) can be regarded simply a s  an 
interpolation. In the case of a pure insulator a similar 
approach (see Refs. 7 and 8) clearly loses it validity in 
the vicinity of the frequency w,= 7;'. 

We can thus see  that the frequency dependence of r is  
quadratic at frequencies o, < 7;' , i s  absent in the range 
7;' < W, < (rOrf)-' 12, again becomes quadratic for 
( r0~f)-1/2< w,< 7;' and changes to linear when w,> 7;'. 

If we ignore small changes in the velocity of sound, 
in the elastic moduli, and in the phonon-phonon relaxa- 
tion times of a dirty crystal compared with a pure one, 
we find that at a fixed temperature the frequency depen- 
dence of the absorption coefficient of an acoustic wave 
has the form shown in Fig. 1. For comparison, Fig. 1 
includes the corresponding dependence for a pure cry- 
stal (dashed curve). 

Therefore, in the range of sufficiently low tempera- 
tures roc< rf, the acoustic absorption coefficient for  a 
nonideal crystal considered at frequencies T;'< w, 
< 7;' i s  much smaller (for the same waves and at the 

FIG. 1. 

same temperature) than the absorption coefficient of a 
pure crystal. In the case of two crystals with identical 
times rf but with different values of lo, this reduction 
in the absorption coefficient is  more marked for a cry- 
s ta l  with a small value of the ratio rO/rf. Under experi- 
mental conditions this situation may be realized in the 
case of solid solutions with different stoichiometric 
compositions. Then clearly the ratio in question has a 
minimum for a specific stoichiometric composition. It 
follows that the composition dependence of the absorp-1 
tion coefficient of an acoustic wave may be represented 
qualitatively by a bell-shaped curve with a minimum 
(naturally, if for a t  least one solid-solution composition 
the value of r0 becomes less than rf). 

3. We shall now consider the absorption of acoustic 
waves in insulator crystals containing Rayleigh scat- 
tering centers. As before, we shall assume that 
w,r,(T)<< 1 [rO(T) is the relaxation time of phonons of 
energy of the order of k, T scattered by impurities] and, 
moreover, we shall postulate that a q4. Using 
Eqs. (18) and (20) for the q >q l  case [q, is found from 
the condition ~ , r , ( q ~ ) =  11 and Eq. (17) for q <q,  [wf 
in Eq. (17) should then be replaced with to,= 1 +i/w,r,], 
we can easily show that-as in Refs. 1 and 2-the acous- 
tic wave absorption i s  dominated by phonons with quasi- 
momenta close to q,. This result i s  valid if the role of 
the anharmonicity i s  small, i. e. , if rf(ql)>> rO(ql). It 
should be noted that if rf(ql)>> rO(ql), then 

and modulation of the phonon temperature in the acoustic 
wave field may be ignored. However, if the anharmon- 
icity effects a r e  important, i. e . ,  if rf(q1)<< rO(ql), we 
find that 

[and this applies even more strongly when wf~,(q,)r~(q,) 
<< 1,  where q, is found from the condition rO(qz) = rf(qz)- 
see  Refs. 2 and 31 and modulation of the temperature of 
phonons with quasimomenta in the range q 2 9, can no 
longer be ignored. Under these conditions we find from 
Eqs. (16) and (18) that the absorption is dominated by 
phonons with quasimomenta of the order of q, and the 
absorption coefficient i s  still given by Eq. (19). This 
was first  pointed out by ~ o g a c h e v ~ . '  for the specific 
case of w,rf << 1. If w,rf<< 1 ,  this means that in con- 
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t ras t  to the results of Refs. 2 and 3, impurities have 
practically no influence on the acoustic wave absorption. 
We shall show below that the results of Refs. 2 and 3 
apply to the absorption of shear waves in high-symmetry 
crystals. 

4. We shall now consider briefly the problem of the 
absorption of a shear acoustic wave traveling along a 
high-symmetry axis in a cubic crystal. As shown above, 
under these conditions we have v,(w) = 0; the assump- 
tion that y, depends only on the modulus of k i s  unjus- 
tified and for this reason Eq. (16) for the absorption 
coefficient of an acoustic wave is invalid. 

We shall assume that a shear wave travels in a cubic 
crystal along the [001] axis. In the case of a wave po- 
larized along the [loo] axis the quantity y,(kj) consider- 
ed in the elastic continuum approximation i s  given by 

1 r. (kj) = - (c,,+c,,,) sin 26 cos 0, 
2~11 

where and $ a r e  the angles which define a unit vector 
in the direction k ;  c,,, c,,, and c15, a r e  second- and 
third-order elastic moduli (a crystal is  assumed to be 
elastically isotropic). " 

The kinetic equation for the function ~ , , ( g ,  +) given by 
Eq. (7) (where we must retain the dependence of Fk, on 

and 3)  i s  
. D .  UI 

F ~ ( 0 m )  =h ZS, j dB' sin0' j df#'P.(cos 6 )  Fhr(O1@') 
"-0 0 0 

+ iquoko (k j )  c,,+c, AT h o ( k j )  1 
s in6cosBcos@----  

~ J J ( w ~ . - z )  C I I  T io..rfa,, W , ~ - Z  
. (22) 

We shall show that under these conditions we have AT/T 
=O. In fact, in order to determine ATIT, we find from 
Eq. (13) that we need to know the quantity 

Integrating the left- and right-hand parts of Eq. (22) 
with respect to d? from 0 to 2n, and introducing the 
function 

we obtain 

Using Eq. (lo), where the second term in the brackets 
should be assumed to vanish, and Eq. (131, we can 
easily show that AT/T = 0, i. e. , that in this case there 
is  no modulation of the phonon temperature. We can 
also show easily that a solution of Eq. (22) i s  of the 
form 

In fact, assuming that AT/T=o and transforming the ex- 
pression for Pn(cosS) in accordance with the addition 
theorem for spherical harmonics, we find that 

F,, ("8~) =Fb (z) cos Q, 

where F,(z) i s  found by solving the following kinetic 

equation: 

where P:(z) a r e  associated Legendre functions. 

It should be noted that because of AT/T=O, the ex- 
pression for r found by solving Eq. (23) applies 
throughout the range of validity of the kinetic approach 
when tiw,<< kB T. Like the kinetic equation (9), Eq. (23) 
describes a strongly anisotropic phonon distribution 
function for the w,T~-" 1 case and this function cannot 
generally be represented in the frequency range under 
discussion by a finite number of harmonics (relaxation 
of each harmonic i s  characterized by a different time 
constant and these time constants may differ consider- 
ably from one another: in particular, T ,  and T, in the 
sequence {T,} may differ by several orders  of magnitude 
if a small-angle phonon scattering predominates). 

Equation (23) can be solved exactly if: a )  the cross  
section for the scattering of phonons by impurities 
S(cos5 ) is  jsotropic , i. e. , if it i s  independent of 5 ; 
b) if S(cos8) can be represented by an expansion in 
terms of the first  two Legendre polynomials, i. e. , if 

S(cos 6 )  =S,+Sl cos 6. 

We shall not analyze the behavior of these solutions in 
the region w,r0% 1 when the anisotropy of the phonon dis- 
tribution function mentioned above is important. We 
shall simply note that in all cases  when w,T,<< 1 (T,, 
<< rf) the absorption coefficient of an acoustic wave i s  
described by a formula similar to the formula obtained 
by Logachev5 which in the case of insulators with large 
numbers of Rayleigh scattering centers gives the re-  
sults similar to those obtained in Refs. 1 and 2. In 
particular, if the anharmonicity is  significant, the phon- 
on group dominating the absorption is the one which 
obeys the condition rt(q2)= r0(q2). The identity of the 
results obtained by both approaches i s  to be expected 
because in this case we have AT/T=O. 

We point out finally that in crystals with complex unit 
cells the presence of optical branches (particularly low 
lying branches of optical phonons) may alter consider- 
ably the results of Refs. 1-3. In particular, in the 
temperature range where optical phonons make a con- 
siderable contribution to the absorption of sound, the 
absorption i s  dominated (exactly a s  in a pure crystal) 
by the thermal phonon groups because the cross  sec- 
tions for the scattering of optical phonons on impurities 
do not decrease very rapidly on increase in the optical 
phonon wavelength. 

We conclude by considering briefly the reasons for 
the appearance of the above-mentioned singularities 
in the frequency dependence of the absorption coefficient 
of an acoustic wave. As pointed out above, the contri- 
bution to the dissipative function is made by modulation 
of both the energy and temperature of phonons in the 
field of an acoustic wave. 

If there i s  no modulation of the phonon temperature 
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(see Sec. 4), relaxation of the acoustically perturbed 
phonon distribution function to a state of equilibrium in 
dirty crystals occurs because of collisions of phonons 
with impurities and also because of diffusion. The ab- 
sorption coefficient in the w,T,<< 1 case is then clearly 
described by the Akheizer formula, i. e. , by r - w:?,. 
The impurities therefore have a considerable influence 
on the absorption of transverse sound in high-symmetry 
crystals. The anomalies of the frequency and tempera- 
ture dependences of I' obtained for crystals with Ray- 
leigh scattering centers a r e  discussed in detail in Refs. 
1-3 and a r e  considered above. 

If AT/T # 0, the rate of entropy generation in a sys- 
tem depends strongly on the ratio of the characteristic 
lengths which a r e  the acoustic wavelength and the lengths 
describing the relaxation of phonon energy directly be- 
cause of phonon-phonon collisions and also because of 
diffusion. If 0;rf 7, >> 1, then-as pointed out above-the 
contribution of the term due to modulation of the phonon 
temperature is small and, a s  in the A T / T =  0 case,  
relaxation of the nonequilibr ium correction to the phon- 
on distribution function i s  due to phonon-impurity col- 
lisions and diffusion. These collisions suppress a ' 
possible anisotropy of the quasimomentum distribution 
and the diffusion processes a r e  responsible for the 
equalization of the energy (and of the phonon occupation 
number) modulated by the wave field. This is the phy- 
sical cause for the Akheizer dependence of the absorp- 
tion coefficient of sound in dirty crystals a t  frequencies 
(7,rf)-l I2 < 0, < 7;l. 

At lower frequencies characterized by w:7,rf<< 1 the 
relaxation of the nonequilibrium correction to the phon- 
on energy distribution function is due to direct phonon- 
phonon collisions and diffusion processes. Both these 
processes a r e  important throughout the frequency range 
war 7 << 1. At the lowest frequencies corresponding to " O f-l w,< rf the phonon-phonon processes predominate (their 
contribution 7,,/r0>> 1 times greater than that of the dif- 
fusion processes). For this reason the influence of im- 
purities on the absorption of sound is slight under the 
conditions discussed here. At higher frequencies 
T;'< w,< ( T ~ T ~ ) - ~ ~ ~  the temporal dispersion makes the 
phonon-phonon collisions ineffective and the diffusion 
plays the dominant role, resulting in the restoration of 
the Akhiezer frequency dependence of the absorption 
coefficient of sound in the range o,> ( ~ ~ 7 , ) " ' ~ .  This i s  
the reason for the predicted weakening of the frequency 
dependence of the absorption coefficient of an acoustic 
wave in the intermediate range 7i1 < 0, < (rOrf 

It should be pointed out that a similar frequency de- 
pendence of the absorption coefficieflt of sound in insula- 
tors was obtained by Gurevich and Efros13 under condi- 
tions such that the characteristic time of the normal 
processes is  short compared with the characteristic 
time of the umklapp processes: r,<< 7, (the character- 
istic time rU is understood in Ref. 13 to be any time 
describing the loss of the phonon quasimomentum). In 

the case under discussion here we have rN>> 7, and the 
phonon-impurity collision time is roc< rf, SO that the 
physical picture of the absorption is very different. The 
similarity of the frequency dependences of the absorp- 
tion coefficient of sound in both cases is  therefore relat- 
ed to the generality of the acoustic absorption coeffi- 
cients13 although the systems under discussion have 
long relaxation times (in our case, the energy relaxa- 
tion time i s  rf). 

We shall finally point out that in the frequency range 
T;'< w,< ( T ~ T ~ ) ~ ~ ~  where the absorption coefficient is 
independent of the frequency of an incident acoustic 
wave, its temperature dependence becomes very strong: 
r - PT;'(T). Clearly, the size effect in the absorption 
of hypersound in insulators14 is due to this circumstance 
and due to the fact that we can reduce significantly the 
value of 7, by restricting the transverse dimensions of 
a sample even in the case of relatively "pure" samples. 

The authors a r e  grateful to V. L. Gurevich for val- 
uable comments. 

')AS shown below, the condition ~ ~ ( q ~ )  = is  important only 
in the case of transverse waves. 

2 ) ~ t  should be pointed out that the scattering of phonons by dis- 
locations can be regarded as isotropic in the case of averag- 
ing over all the directions of dislocations and when these 
directions are distributed uniformly in a crystal. 
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