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The strong-coupling expansion in the Wilson U ( co ) lattice gauge theory in a space of an arbitrary 
number of dimensions is formulated in terms of the sum over free lattice surfaces with local 
intrinsic structure. This proves the equivalence of multicolored quantum chromodynamics and a 
certain free-string theory. The 1/N expansion then proves to be equivalent to a topological expan- 
sion in terms of these lattice surfaces. A generalization of this procedure that is suitable for 
describing the weak-coupling phase in the U ( co ) gauge theory is proposed. 
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1. INTRODUCTION 

The possible equivalence between multicolored quan- 
tum chromodynamics (QCD) and a certain free-string the- 
ory is a relatively old idea in the theory of gauge fields. Such 
an equivalance could play an important role in the develop- 
ment of the theory of strong interactions. The theory of the 
chromodynamic string not only provides a physical descrip- 
tion' but may also reveal new ways of solving the QCD prob- 
lem. 

The existence of sums over surfaces in the U (N ) gauge 
theory was first pointed out in the well-known paper by Wil- 
son.' However, his strong-coupling expansion was more like 
an expansion over surface-type clusters than a sum over free 
(noninteracting on crossings) surfaces. 

The second step was made by 't Hooft in his paper on 
planar diagrams in QCD.3 However, the topological classifi- 
cation of the diagrams is still not equivalent to the develop- 
ment of a theory of a free chromodynamic string. 

The first steps in this direction were made in Ref. 4, 
where an attempt was undertaken to establish the correspon- 
dence between multicolored QCD and the Nambu-Goto 
string. These papers threw some light on the structure of the 
possible correspondence, but the mathematical methods 
used were not sufficiently reliable. 

An interesting attempt to sum the planar diagrams in 
the form of a string model was undertaken by Migdal,5 but 
requires additional and more direct verification before this 
result can be used for practical calculations. An important 
point in this paper was the introduction of internal degrees of 
freedom on the string that effectively models the planar 
Feynman diagrams. 

The two-dimensional gauge theory has been found to be 
useful from the heuristic point of view. Some of the results 
obtained for this model6 indicate the existence of a string in 
the limit of infinite N. 

From our point of view, the principal impediment along 
this promising path is the absence of simple and reliable re- 
sults. In the present paper, we shall try to formulate this type 
of result for the strong-coupling expansion in U (N)  lattice 
gauge theory in a space of arbitrary number of dimensions. 

We shall consider the strong-coupling expansion for the 
free energy, defined as 

where U,,  is the U (N)  group matrix corresponding to a link 
in d-dimensional lattice that begins at the site r and has the 
directionp, and d (U,, )is the U (N ) invariant Haar measure. 

We shall show (despite the doubts expressed in Ref. 7) 
that the strong-coupling expansion forF( f l  )can be written in 
the form 

0 

where a, is an oriented surface with x handles, constructed 
from lattice plaquettes in accordance with the rules de- 
scribed in the next section, Area (a, ) is the number of pla- 
quettes on the surface a,, and fc are local integer-valued 
factors, each of which refers to a particular point 6 on the 
given surface, and depends only on the internal properties of 
the surface at this point. 

An analogous expression is also available for the Wilson 
average: 

In the limit as N-t a,, only the planar surfaces survive 
in (2) and (3), and we are left with the string picture of multi- 
colored QCD. 

The procedure used to derive these formulas is, in many 
ways, analogous to that used in the Weingarten lattice model 
for the free string,'but the rules for constructing the surfaces 
("differential lattice geometry") are somewhat different. 

The most important feature of our lattice string repre- 
sentation is that it can be generalized to the weak-coupling 
phase of U ( co ) theory, which is separated from the strong- 
coupling phase by the Gross-Witten phase transition. This 
generalization is achieved by isolating the N gauge-invariant 
variables responsible for the transition. 

In Sec. 2 we shall obtain the rules for the summation 
over lattice surfaces and will describe the internal structure 
of the surfaces. 

In Sec. 3 we shall formulate the lattice string represen- 

1096 Sov. Phys. JETP 58 (6). December 1983 0038-5646/83/121096-07$04.00 @ 1984 American Institute of Physics 1096 



tation for the free energy. We shall put forward arguments 
suggesting that the local limit of our chromodynamic lattice 
string in the strong-coupling phase is described by the 
Nambu-Goto-Polyakov ~ t r i n g . ~  

Sec. 4 is devoted to the generalization of our string con- 
struction to the weak-coupling phase of U ( m) gauge theory. 

2. STRONG-COUPLING EXPANSION. U(m) INTEGRALS AND 
CONSTRUCTION OF SURFACES FROM PLAQUETTES 

In QCD, the representation in the form of a sum over 
free surfaces can be obtained from the strong-coupling ex- 
pansion, just as in the case of the Weingarten lattice ~ t r i n g . ~  
The basic idea of this construction is the correspondence 
between the integral over the group variable on a link and the 
joining together of surfaces consisting of plaquettes along 
this link into pieces of the surface. In this section, we shall 
examine in detail this correspondence, and this will lead us 
to the rules for constructing the chromodynamic lattice sur- 
face. 

The strong-coupling expansion is the expansion in 
terms ofpof the right-hand side of Eq. ( 1 ) .  An arbitrary term 
in the expansion has the form 

We must now integrate in (4)  with respect to all the 
variables on the links U,,, . Each such integral is evaluated 
for several U-matrices contained in the plaquettes, including 
the given link. It is clear that the number of U-matrices in 
each integral must be equal to the number of U +-matrices in 
order to ensure that the result of integration is nonzero. 

The plaquettes combine into different clusters in the 
course of integration. This picture is well removed from the 
representation in the form of a sum over free surfaces, be- 
cause the resulting surfaces become branched, i.e., the "ob- 
served" self-crossings. 

In the case of the Weingarten lattice string, it can be 
shown that any plaquette configuration near a given link can 
be represented by freely crossing pieces of surface, each of 
which consists of two plaquettes joined along a common 
link. This is possible because of the Gaussian nature of the 
measure for the U-matrices in the Weingarten model. 

In our case, the measure is not Gaussian, but we shall 
show that an analogous procedure can be used to join togeth- 
er surfaces consisting of plaquettes, but with a certain com- 
plication of the differential lattice geometry of these sur- 
faces. In other words, the recipe for joining together the 
plaquettes will be somewhat different from that in the Wein- 
garten model. 

We begin with some simple examples and then describe 
the general picture. 

The simplest configuration consists of two plaquettes 
with a common link. The corresponding integral is 

1 .  
d ( U )  U,'U,+k = - st's:, ( 5 )  

in complete analogy with the Weingarten model. The joining 
together of the plaquettes can be represented schematically 
by the diagram 

i 1 

The plaquettes are joined together in accordance with the 
structure of the tensor 6 3;. 

Another, less trivial, example involves four plaquettes 
with a common link (see the left-hand side of the equation in 
Fig. 1 ) .  The corresponding U ( N )  integral is 

1 -- 
N5 

6,,'l6,~6,'16,,~ + . . . + (i,, j, - iJa) (7) 

where we have expanded the coefficients in front of the two 
different invariant tensors in terms of 1/N. We note that the 
structure of the first tensor is the same as in the Weingarten 
model and corresponds to Wick's pairing for pairs of U-ma- 
trices. The second tensor is quite new. 

It is useful to represent (7) with the aid of the following 
diagrams 

The crossing lines in the graphs show, as we shall see below, 
the "history" of the permutations of the indices (k ,c tk , ) .  

We note that the tensor structure of the first and second 
terms on the right-hand side of (8) is equivalent to the struc- 
ture of the third and fourth terms, respectively. However, 
the interpretation in terms of the joining of plaquettes will be 
different, and is given in Fig. 1 .  

The joining of plaquettes in the first terms on the right- 
hand side of Fig. I is analogous to the situation in the Wein- 
garten model. 

The second term represents a different tensor structure, 
typical of U ( N )  gauge theory. The most natural surface that 
embodies this structure is obtained by joining plaquettes into 
a saddle-type configuration. 

The third term has the same tensor structure as the first, 
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FIG. 1. 

but a different order in 1/N. We shall represent it by two 
pieces of the surface, each of which is made by joining two 
plaquettes into a single surface with the aid of a tube. 

The fourth term on the right-hand side of Fig. 1 is a 
nonplanar surface. 

It is, of course, immaterial where, on a given link, the 
saddle points are located. To be specific, we shall suppose 
that all these new vertices on the surface (we shall call them 
vertices on links, in contrast to vertices on surfaces, which 
are situated at the sites of the d-dimensional lattice) are situ- 
ated in an infinitesimal neighborhood of the midpoint of the 
link. Of course, in our figures, all the resulting saddles and 
tubes have finite dimensions. 

We must now describe the general case of an arbitrary 
number of plaquettes near a given link. The geometry of the 
corresponding surfaces will arise in close analogy with the 
four-plaquette case examined above. We shall also be able to 
evaluate the coefficients in (8) and its generalizations, and 
the numbers fc in (2) and (3). As in the case of the Weingarten 
model, the Euler theorem will enable us to represent the l/N 
expansion in the form of a topological expansion in terms of 
our surfaces, and the leading term in 1/N will then corre- 
spond to the sum over planar surfaces. 

Let us therefore consider the U (N)  group integral in the 
following form: 

where the U (N ) group measure was determined by using a S- 
function link and then exponentiating with the aid of the 
anti-Hermitian matrix field a. 

We can now perform the Gaussian U-integration. In 
accordance with Wick's theorem, we have 

+ other Wick pairings 1. (10) 

The integral with respect to a can readily be evaluated 
by the Schrodinger-Dyson method which, in this case, yields 

where F(a) is an arbitrary function of the matrix a (with 
suitable properties at infinity). 

Let us apply (1 1) to the first term in (10) (all the other 
terms are similar). If we take 

F ('a) = [61,i16j,k1] [ 6 , 2  (a-') j,"l] . . . . [ti1) (,a-')  j?] (12) 
we obtain 

< [81 , ' t (~ - ' ) j ," l ) .  . . . - [ 6 1 ~ ( ~ - ' ) ~ ) > a  

This equation can be represented graphically by 

The crosses in this expression represent the a- '-matrices. 
The identity given by (14) tells us that we can remove 

one cross from any diagram (replacing a-' by S ) and sub- 
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tract from the resulting diagram all the diagrams that are 
obtained by interchanging this cross with any othei (with the 
factor l/N), which signifies the interchange of the corre- 
sponding indices. Repeated application of this procedure 
gives the l/N-expansion of the coefficients in the group inte- 
grals, such as (8). For example, 

X X X  X  X  X  X  

I =  ii-k#-tl-i/ y 

We note that some of these terms may have an equivalent 
tensor structure: for example, in the last row in (1 5),the first 
term is equal to the fourth, and the second to the third. 

The type of plaquette junction, and the resulting pieces 
of the surface, follow from the structure of the correspond- 
ing terms in (14) or (15): as in the case of (8) and Fig. 1, such 
diagrams give the "skeleton" (lines of plaquette junction) for 
the corresponding representation of the surfaces in the fig- 
ures. Each term is a set of handles separated by tubes. 

We shall now interpret the appearance of the factor 1/N 
in (8), (14), and (15) with a view to the further application of 
Euler's theorem to the development of the topological ex- 
pansion. We note that the factor 1/N appears after each in- 
terchange of two line ends. However, each interchange leads 
to the formation on the resulting surface of two additional 
edges and one new vertex. We can therefore interpret this 
factor in the same way as in the Weingarten model, in which 
each surface is accompanied by the factor 

N P + V  -L 
f (16) 

where F is the number of faces (plaquettes) on the surface, V: 
is the number of vertices, and L is the number of edges. 

In our case, the result of substitution in (14) is 
N A V - A L = N  .N-Z=I/N, (I7) 

Thus, the expression in (16) is also valid in our case. 
We now proceed to our last remark before we finally 

formulate the string representation for the lattice QCD. 

FIG. 2. 

Let us compare the second and third terms in the last 
row of (15). As already noted, they have the same tensor 
structure, but the corresponding surfaces are somewhat dif- 
ferent: they contain two simple saddles (with two "valleys") 
that follow in different order along the given lattice link. 
However, we have already agreed to place all saddles at the 
center of the link, so that there will be no difference between 
the corresponding surfaces. The two terms can then be rep- 
resented by a single term and the same skeleton graph: 

The corresponding surfaces will then take the form of a 
three-valley saddle (sometimes referred to as the "monkey 
saddle"). The arbitrary case of an n-valley saddle is shown in 
Fig. 2. Thus, three-valley saddles appear in the sum over the 
surfaces with a factor of 2. 

Any diagram consisting of any number of plaquette 
pairs containing a given link can be reduced in an analogous 
manner. The corresponding surface can be looked upon as 
consisting of different n-valley saddles separated by tubes. 
Each n-valley saddle is accompanied by an integer factor f, 
that depends only on n. 

We shall now evaluate the f, . It is clear from the last 
row in (15) that different terms with equivalent tensor struc- 
ture differ only by the order of permutation of the crosses. 
Thus, we see that I f, I is equal to the number of all the possi- 
ble ways of forming the n-valley saddle by a successive inter- 
changing of the crosses. Such permutations must not form 
closed cycles of the form (l++2),  ( 2 ~ 1 )  or (l++2), (2-3), 
(3-1) because such cycles result in the formation of tubes 
separating saddles. For example, the third term on the right- 
hand side of (8) contains two two-valley saddles separated by 
a tube (see Fig. I), so that they cannot join to form a three- 
valley saddle. 

To evaluate f,, consider the formation of an n-valley 
saddle from a configuration of 2n pairs of plaquettes, shown 
in Fig. 2. A graphical representation similar to (14) can then 
be represented by Fig. 2 as viewed from above: 

If we continue such operations with the crosses, we 
shall obtain, among other things, all the permutation var- 

1099 Sov. Phys. JETP 58 (6), December 1983 V. A. Kazakov 1099 



iants that lead to the saddle of Fig. 2. It is clear that the first 
term on the right-hand side of (19) cannot produce a saddle 
of this kind, and that the remaining terms lead to the follow- 
ing recurrence relation for f, : 

with the normalizing condition 

fo=f,=l. 

The factors 1/N were not taken into account in these expres- 
sions because we now know how to take them into account 
for each surface. 

Consider the generating function 

and rewrite (20) in the form 

f ( t )  "-f ( t )  -t=O. (23) 

As a result. we obtain 

- )  (3 n=1,2,3 ,... 
-2 (2n-1) f n!) ' ' 

the numbers 

f l=I ,  fz=-1, fS=2, f&=-5, /5=14 (26) 

have already appeared in Ref. 9; here they play the role of 
internal local factors on a surface. They are local because 
they appear independently at each vertex on a link on a given 
surface, and they are internal characteristics of the surface 
because n (the number of valleys in the saddle) can be deter- 
mined by an internal observer on the surface. The number n 
is related to the internal angle p of the surface at a given 
vertex on a link (or to the internal "curvature") by 

We are now in a position to formulate our representa- 
tion for the free energy in QCD in terms of the sum over 
noninteracting surfaces with internal local structure. This 
will be done in the next section. 

3. FORMULATION OF THE REPRESENTATION OF THE SUM 
OVER FREE SURFACES AND THE POSSIBLE LOCAL LIMIT 

In the last section we formulated the rules for construct- 
ing surfaces from the plaquettes of a d-dimensional Euclid- 
ean lattice. The plaquettes adjacent to a given link are joined 
together in accordance with the skeleton diagrams, such as 
(14) and (l5), which form the 1/N-expansion for the single - 
plaquette integrals. They produce singular saddles and tubes 
(cf. Figs. 1 and 2), and also simple junctions, indicated in (6) .  
All these saddles and tubes lie at the midpoint of a link and 
form new vertices of the surface, to which we have referred 
as vertices on links (in addition to the site vertices that ap- 
pear in the Weingarten model). Each group of n simple sad- 
dles (two-valley saddles) merges into a single n-valley saddle 

if this merging does not modify the topology of the surface 
(does not annihilate the tubes). 

We shall now formulate the sum over the free surfaces 
for the U ( N )  gauge theory in the case of free energy: 

where a, is the closed connected surface with x handles 
(Euler number equal to 2 - 2%) and 6 are the "coordinates" 
of the vertex on a link for the given surface (in the local limit, 
we obtain the pair of coordinates l , ,  6, that parametrize the 
surface). 

The sum over the connected surfaces for the free energy 
appears by close analogy with the Weingarten model: the 
strong-coupling expansion for the statistical sum is given in 
terms of all (and not merely connected) surfaces, and, by 
taking the logarithm of the statistical sum, we retain only 
connected surfaces in the sum. 

In the limit of large N, only the planar surfaces a (x  = 0) 
survive in (28), and we obtain 

Analogous formulas can be written down for the Wil- 
son average [see (3)]. Care must be taken when the factors f, 
are determined near the boundary C, where the local angles 
q, = 27n are not well defined. 

We are now in a position to put forward some ideas on 
the possible local limit for the chromodynamic lattice string 
(29). 

It would appear that the existence of a local internal 
structure on the surface, i.e., a structure that can be deter- 
mined by a two-dimensional observer by measurements in- 
volving a few neighboring surface plaquettes, may lead to a 
local limit in the form of the Nambu-Goto-Polyakov 
string: I0 

where gab is the metric tensor on the surface. 
The principal argument for the proposition that (30) is 

the local limit for (29) is the existence of a unique local inter- 
nal invariant of the lowest dimensionality-the surface area. 

One could object to this suggestion by noticing that the 
individual terms in the sum given by (29) are not even posi- 
tive-definite. However, a fixed point for (29) at which a local 
limit is possible may also correspond to complex values of 
the coupling constant 1/B, and so this type of objection is not 
serious. 

4. GENERALIZATION TO THE CASE OF WEAK COUPLING 

It is well known that the strong-coupling expansion in 
the U (m)  lattice gauge theory cannot be continued into the 
physically interesting region of weak coupling because of the 
Gross-Witten phase transition. Our lattice string is therefore 
required in the modification that we shall examine in this 
section. 

Let us begin with the simple example of a single-pla- 
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quette theory. Introducing the Lagrangian multiplier a and 
integrating with respect to U + and U, we obtain the follow- 
ing expression that is analogous to (10): 

In the limit of infinite N, direct expansion in terms o f8  yields 

where we have used the factorization property for large N 
and Eq. (21). We see that direct integration with respect to a 
of each term in the expansion in terms o f 8  gives the correct 
result only for the phase of the strong coupling. 

We now consider the integral with respect to a in (32) in 
terms of integration with respect to the angle variables and 
the eigenvalues: 

aij=Qik+hknhj, dafj=d ( Q )  (n dhi ) (n (hi-hj) ) - (33) 

Integrating over the unitary matrix f l  in the first row in (32), 
after using the factorization property, and summing over k, 
we obtain 

We are thus left with only N (and not N ') variables of integra- 
tion A,, and we can use the method of steepest descents to 
evaluate the integral. The corresponding expression for the 
saddle point is 

1 dhlp(h') 1 
I - -+2 f  = p". 

h h-h' 

The spectral function p(A ) describing the distribution of 
eigenvalues of the a-matrix can be found by standard meth- 
ods (by investigating its analytic properties). The solution 
given by (35) exhibits a third-order transition for 8, = 1/2 
(the Gross-Witten phase transition). This enables us to cal- 
culate colorless quantities for any of the two phases. 

We thus see that the operations of integration over 
eigenvalues and exponentiation of the 8-expansion are non- 
commutative, and this is responsible for the phase transition. 

We shall now apply this approach to the realistic case of 
the a-dimensional U ( UJ ) lattice gauge theory. We therefore 
substitute each a , ,  in (10) in the form given by (33), and 
integrate with respect to the angle variable a, ,  for fixed 
A,,,. This can be done with the aid of the Schwinger-Dyson 
equation that follows from invariance under the left shift on 
the group 

6Qij=~o~ikoQkj. (36) 

Applying (36) to the first term on the right of (lo), we obtain 

the following recurrence relation [cf. (14)l: 

(3 7) 
A cross in this expression represents the matrix 
, k + A k ' k j ,  two crosses represent the matrix 
flik +Ak -'n,; and the symbol ( X ) denotes N - l8,Ak -'. 
All the other designations are analogous to (14). 

We see that (37) is very close to (14). The only exception 
is the last term written out in (37), and the fact that now 
( x ) # 1, and is a known function of the N variables Ai (anal- 
ogously, ( X X ) = N - 'XkAk  -2, and so on). Consequently, 
the structure of the free surfaces regains its principal fea- 
tures, but the factors on the surface are now definite func- 
tions of A :,. The string will therefore experience the effects 
of the external field, which depends on the lattice coupling. 

Two simplifications arise in the limit of infinite N. First- 
ly, only the planar surfaces survive in the corresponding sum 
over the surfaces. Secondly, we are left with only N variables 
of integration on each link and, consequently, there is a sad- 
dle point A :, = A : that does not depend on the lattice coor- 
dinate because of the translational and rotational lattice in- 
variance. 

To evaluate A :, we write the partition function in the 
form 

Z= Jn dhi exp { N V  [z (A,-ln L) + - lnl hi-h,l 
f i i+j 

where Vis the number of links in the lattice and FP,A ) is the 
sum over all the closed planar surfaces with the structure 
determined from (37). The equation for the saddle-point val- 
ueA : is 

The problem thus reduces to the evaluation of F @,A ), 
i.e., the sum over the planar surfaces for arbitrary Ai . We 
note that the variables R :'* are gauge-invariant. 

Of course, the principal question in our approach is that 
of the existence of the local limit for the chromodynamic 
string. Our formulas can be used as the starting point for this 
type of construction. 

The other, more pragmatic, utilization of (37)439) is the 
strong-coupling expansion that is valid for arbitrary 8 
(modified strong coupling expansion). 

The authors are indebted to A. A. Migdal, A. M. Polya- 
kov, E. Witten, S. P. Novikov, I. K. Kostov, S.B. Khokhla- 
chev, R. L. Mkrtchyan, and A. B. Zamolodchikov for useful 
discussions. 
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