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A formal definition of the process of reconnection of magnetic lines of force is given within the 
framework of almost ideal magnetohydrodynamics (Re, $ 1 ) . It refined previously published 
ideas. It is shown on its basis that the asymptotic Hopf invariant is conserved over time periods 
r much shorter than the skin (diffusion) time rd . There are then in the general case no other 
invariants characterizing the magnetic field configuration in simply connected regions. A method 
of constructing the field-liny-linkage invariants that are different from the Hopf invariant is given 
for the case of smooth flows of a perfectly conducting fluid (Re, = ) . 

INTRODUCTION 

The freezing-in theorem' holds true in the course of the 
motion of a plasma with infinite conductivity, i.e., in the case 
when E = - [vH] /c. (Here and below, square brackets in- 
dicate vector products.) In particular, it follows from it that 
the topology of the configurations of the magnetic lines of 
force are preserved, i.e., the magnetic field lines can undergo 
only smooth deformation, with, in particular, no changes 
occurring in the linkage coefficients. Here it is, of course, 
assumed that the v, H, and E vector fields are sufficiently 
smooth. 

When allowance is made for the finite conductivity 
within the framework of (isotropic) magnetohydrodyna- 
mics (MHD) , the equation for H assumes the form 

d H / d t =  curl [vH] - curl (v curl H) . (1)  

Here Y is the magnetic viscosity and v is the velocity of the 
medium. Generally speaking, Eq. ( 1 ) shows that in this case 
there do not exist any invariants characterizing the structure 
of the set of field lines. Indeed, for v = 0, the magnetic field 
dissipates at t = CC. In this case there remains after a suffi- 
ciently long period of time only the most weakly damped 
mode, H ( x ) ,  the topological structure of whose lines of 
force does not depend on the topology of the field lines at 
t = 0. 

Therefore, on the face of it, the subject of the present 
article seems to be trivial: for Y = 0 any topological invariant 
is conserved, and for v#O no topological invariants exist. 
But the question is not that simple if we are interested in the 
rate of destruction of the invariants in the region of very 
small viscosities: vf  0. 

Let us consider a plasma-magnetic field configuration 
with characteristic dimension L, whose evolution is de- 
scribed by Eq. ( 1 ) and the other implied MHD equations 
determining, in particular, the velocity field' v(x,t). In such 
a situation there are two characteristic time scales: the diffu- 
sion time rd = L 'v-' and the hydrodynamic time r, = L / 
c, , where c, ' = (H 2/47rp) ' I 2  is the Alfven velocity, p being 
the plasma density. At small v values the magnetic Reynolds 
number Re, = rd /rH $1 is high. In this case the topologi- 
cal structure of the magnetic field can vary in the time period 
t < rd . Indeed, it is possible that the nature of the MHD mo- 
tions is such that there occurs a spontaneous sharp decrease 
in the spatial scales of the variation of v and H at times 
t - rH . Similar examples are encountered in various prob- 

lems: in turbulence, during the development of shock waves2 
and current  sheet^.^ Therefore, the role of the second term in 
( 1) is important at times T<T, <rd. In this case the topo- 
logical structure of the field lines is not completely de- 
stroyed, as happens when T-T,. Accordingly, the question 
of the existence of topological magnetic-field invariants that 
are conserved in time periods 747, is entirely well-posed 
and quite important. 

Taylor4 was the first person to approach this question 
with similar formulations. His result can be formulated as 
follows: If there occurs in a system very small-scaled MHD 
turbulence that leads to a situation in which (j2) > (j)2 (here 
( . . . ) denotes spatial averaging), and if rapid topological 
changes are also possible in the magnetic-field configura- 
tions, then the following invariant is conserved: 

Here A is the vector potential of the field H ( H  = curl A) 
and 0 is the total volume of the system, at the boundary of 
which H, = 0. This invariant admits of an interpretation in 
terms of the linkage of the lines of force.',' Following Ar- 
nol'd, we shall call it the asymptotic Hopf invariant. For 
simply connected regions, which are the only regions that 
will be considered in the present paper, relation (2)  is gauge 
invariant. For multiply connected regions this is not so, 
which calls for minor technical complications [including 
limitations on the form of A(x)  1 .  All the results, with minor 
reformulations, remain valid in the general case. 

Taylor's result can be reformulated. The rapid recon- 
struction of the topology of the field lines at T$T, can 
change the linkage of the individual field lines as a result of 
the small-scale turbulence, but preserves the overall linkage. 
Kadomtsev7 formulated this result for magnetic-field con- 
figurations that vary during large-scale reconnections of the 
field lines. 

In our paper we give a formal definition of the reconnec- 
tion process in terms of cuts and splices. It allows us to im- 
part precise meaning to the principal assertion concerning 
the conservation of the sole topological invariant-the 
asymptotic Hopf invariant-in the problem of rapid recon- 
nection in simply connected regions. In multiply connected 
regions (tokamaks) the total magnetic fluxes are also con- 
served. Our definition gives specific form to Kadomtsev's 
ideas, eliminating the vagueness in the introduction of the 
reconnection concept. 
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The paper is organized as follows. In Sec. 1, using spe- 
cific examples, we consider the physical arguments leading 
to the concept of rapid reconnection of field lines under con- 
ditions when Re, ) 1. In Sec. 2 we give new topological con- 
servation laws for the configurations of magnetic field lines 
frozen into an ideal magnetic fluid, i.e., one with v = 0. In 
Sec. 3 we give the general definition of reconnection at low, 
but finite, values of v, and show that only the asymptotic 
Hopf invariant is conserved. 

1. PHYSICAL ARGUMENTS FOR THE INTRODUCTION OF THE 
RECONNECTION CONCEPT 

In this section we shall consider the particular case of 
reconnection in the problem of current-sheet formation. It is 
the formalization of the corresponding properties that leads 
to the general definition of the reconnection concept for 
v+O. 

In normal, almost ideal hydrodynamics discontinui- 
ties-shock waves-develop spontaneously in sufficiently 
fast flows. If the viscosity and thermal conductivity are suffi- 
ciently effective, the discontinuities are smeared out into 
fairly smooth structures. There are weighty arguments in 
support ofthe fact that in MHD, even in the highly nonideal, 
but v = 0 case, a specific mechanism allows for the appear- 
ance of surface-current carrying contact discontinuities- 
current sheets. This conclusion suggests itself when we ana- 
lyze the equilibrium that develops from a given, initially 
nonequilibrium plasma-magnetic field configuration. This 
question has been considered in its most general formulation 
by Arn01'd.~ He arrived at the conclusion that, among the 
smooth MHD equilibriums, i.e., those for which [curl H, 
HI + Ap = 0, only a very narrow class (i.e., those governed 
by the equations curl H  = a H ,  V a  = V p  = 0 )  allow a non- 
trivial topological construction of a set of field lines. This 
class is so narrow that it is unlikely to contain equilibrium 
configurations for arbitrary initial complicated plasma- 
magnetic field configurations. Therefore, a general equilibri- 
um configuration should contain discontinuities. 

A similar question has been considered before from the 
dynamical standpoint by Syrovatskii,' but the analysis is for 
a narrower class of two-dimensional problems with 
p  = const. If the initial magnetic configuration contains zero 
points, and goes over into a smooth equilibrium, then an 
arbitrarily weak perturbation will, generally speaking, pre- 
vent the initial configuration from going over into a state of 
smooth equilibrium. But the states containing two-dimen- 
sional, surface-current carrying strips-current sheets- 
will be equilibrium states (in the case when Y O ) .  They are 
transverse to the initial plane. 

It can be assumed that, in the general case of MHD with 
VEO, the plasma will, after going over into the equilibrium 
state, contain current sheets. If v is arbitrarily small, but 
finite, then the second term in Eq. ( 1) cannot be neglected in 
the vicinity of the resulting current sheets. Therefore, mag- 
netohydrodynamic equilibrium with v = 0 will not remain 
as such for v # 0. 

The question of the nature of the resulting flow has not 
been fully clarified in the literature. The accepted point of 
view consists in the following. A flow develops with velocity 
v much higher than the diffusion rate c, /Re,, and this leads 
to fairly rapid reconnection of the magnetic fluxes lying on 
different sides of the current sheet. Such a flow has been 
considered by Petschek8 (see Fig. 1 ) . It contains four retard- 
ed shock waves, which intersect in the so-called diffusion 
region. The size of the diffusion region has not been unam- 
biguously determined, but for the smallest admissible size 
the reconnection rate satisfies 

U - C ~ / I I I ~  Re,, a>O. 

As applied to the theory of solar  flare^,^ the reconnec- 
tion process has been considered in a diffusion region occu- 
pying the entire width of the current sheet; in this case we 
have v-c, Re, - ' I 2 .  The flow pattern differs only quantita- 
tively from Fig. 1. For v-0  there also exist'03" exact MHD 
solutions describing the reconnection process; in this case 
v-c, holds. These solutions contain eight discontinuities 
that intersect at one point in the plane. 

To avoid any misunderstanding, let us emphasize that, 
in the preceding paragraph, we discussed two-dimensional 
problems. The flows considered possess the following gen- 
eral properties. 

The freezing-in conditions are well fulfilled in a small 
neighborhood of the point 0 (Fig. 1 ). The pairs of oppositely 
directed field lines move to this point, and, upon crossing 
this point, they "snap" and join in a different way. In the 
vicinity of a "splice" the field lines behave like the contour 
lines of a function in the vicinity of a saddle point. The char- 
acteristic reconnection time is T, = L /u < T, , and T, /?, + 0 
as Re, -+ co . From this it follows that, on the scale of T,, 
during which the topology of the magnetic field relaxes com- 
pletely, the reconnection process occurs instantaneously. 

Kadomtsev7 has noted that: a )  qualitatively, the longi- 
tudinal magnetic field lying in the plane of the current sheet 
has no effect on the reconnection process; b)  in the three- 
dimensional case the reconnection can occur inhomogen- 
eously along the field line corresponding to the zero point of 
the two-dimensional problem. 

FIG. 1. Fast field-line reconnection pattern in the Petschek model. 
The continuous curves are magnetic field lines. The dashed curves 
are plasma streamlines depicting the flow of the plasma. The retard- 
ed shock waves and the diffusion region are hatched. Outside this 
region the magnetic field can be considered to be frozen into the 
plasma. 
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The above examples allow us to give a general definition 
of the reconnection process for v-0. The corresponding 
construction will be given in Sec. 3. First, let us consider the 
behavior of the field lines in ideal MHD with v = 0. 

2. THE CONSERVATION LAWS IN A PERFECTLY 
CONDUCTING MAGNETIC FLUID 

Equation ( 1 ) for ideal MHD is simpler: 

It is easy to verify by direct computation that the integral 
invariant (2)-the asymptotic Hopf invariant-exists in 
this case: 

For an arbitrary A field the quantity h assumes a real value. 
If we consider the projection f: S +S 2, and identify the A 
field with the tangential field t o S  3, then the invariant h is the 
classical Hopf invariant of the projection f: S +S 2, and h 
assumes integral values. The representation (2)  for h in this 
case was obtained by Whitehead.', 

The Hopf invariant admits of another topological inter- 
pretation, which was advanced by Hopf himself. Let there be 
prescribed the following regular mapping f (rank f = 2): 
S -+S ', and let x, andx, be regular points on S 2. The inverse 
images of the points x, and x ,  will respectively be the curves 
I, and I, in S ,. The Hopf invariant h ( f ) of the mapping f is 
called the coefficient of linkage of the curves I, and I,. 

Arnol'd has shown6 that the asymptotic Hopf invariant 
(on R ,) can be interpreted as the average (over all the field- 
line pairs) asymptotic number of linkages. He defined the 
latter in terms of the asymptotic behavior of the linkage of, 
possibly, open lines extended infinitely far, and "nonsingu- 
lar" closure. 

Let us note that, to prove the invariance of the expres- 
sion (2),  we do not need to carry out calculations. It is suffi- 
cient to bear in mind that, because of the freezing in of the 
field lines, the topology of the initial configuration (in par- 
ticular, the linkage coefficients) is preserved at all times. But 
it is possible to construct examples of initial field-line config- 
urations for which the linkage coefficients are equal to zero, 
although the configurations themselves remain connected 
(Fig. 2) .  An example of linkage for which the paired linkage 
coefficients are equal to zero, but the field lines cannot be 
unlinked, is the well-known-in lattice theory-Borromeo 
ring (Fig. 3).  Following Ref. 13, we shall give the topologi- 
cal invariants of similar linkages, that can be regarded as 

FIG. 2. The Whitehead linkage. 
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FIG. 3. The Borromeo ring. 

higher conservation laws for the MHD equations in the case 
when h is equal to zero. In contrast to Ref. 13, we shall use 
tensor notation (which physicists are more familiar with), 
and not differential forms, although the latter are more suit- 
able for topological investigations. 

First, let us give explicit formulas for the solution of Eq. 
(3).  These imply that the topological invariants of the link- 
ages are conservation laws. 

We shall describe the evolution of a magnetic field in a 
moving medium with the aid of the displacement field 
X(x,t) giving at the time t the position of that particle of the 
fluid which at the initial time t = 0 was located at the point x. 
We thus introduce a Lagrangian description of the fluid mo- 
tion. The displacement field generates at fixed t the one-to- 
one mapping 

X: x-fxl=X(x, t) .  

The following relations are valid: 

x-'[X(x, t) ,  t]=x; X[X-'(x, t ) ,  t]=x. 

The introduction of such a mapping allows us to write down 
the solution to (3)  in its explicit form14: 

dXi H i  (X, t) =I& (x. 0) -- det 1 lgll. 
axj 

In the case of a definite gauge, this change in the field H 
corresponds to the following change in the vector potential: 

dx. 
Ai(X,t) =-LAj(x,O).  ax, 

The subscripts in (5)  and (6)  will hereinafter denote the 
coordinates of the vectors in some Cartesian coordinate sys- 
tem. In Eqs. (5)  and (6)  we have, for clarity, allowed some 
obvious simplification of notation. 

Because of the reversibility of all the transformations 
entering into (5)  and (6) ,  all the topological invariants con- 
nected with H(x,O) are, when v(x,t) is sufficiently smooth, 
the same as for H (x,t). Furthermore, it is easy to verify that, 
for the gauge employed, the X transformation leaves un- 
changed the following volume form: (A-H) dV, i.e., 
a, (AwH) + div{v(A*H)) = 0, and A-H varies in the same 
way as the matter density. 

Let us illustrate the construction of the topological in- 
variants of linkages by carrying out the construction for the 
linkage of three curves: I , ,  I,, I,. We shall need some topo- 
logical facts (for proofs, see, for example, Ref. 15). For 
greater clarity, we shall begin with the consideration of the 
Hopf invariant for the linkage of the two curves I, and I,; the 
invariant in this case coincides with the Gauss linkage coeffi- 
cient. 

Let u,'" ' be two covariant vector fields determined by 
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the two curves I,. Here i = 1, 2, 3 is the space index, while 
the index a = 1, 2 numbers the fields. Each u,'" ' field is de- 
fined on the complementary-to the curve I, -set (which 
we shall denote by 0, ) inS3, and satisfies two characteristic 
conditions: 

oju:" =o (o=i, 2) ; 1 uy' drz=k (C, I.). 
C 

Here and below D, ui,, , , , ,," denotes the antisymmetrized dif- 
ferentiation of the covariant tensors, i.e., Djui,, , , 
- - dlju,, , ,,n (4 denotes the partial derivative d /dd ) and 

k(C,1, ) is the coefficient of linkage of a closed oriented 
curve C with I,. The tensor ui'"' is determined up to an addi- 
tive gradient. 

Let B, (a = 1, 2)  be the boundary of some tubular 
neighborhood of I,, and let us assume that it does not inter- 
sect another curve. Then 

I uilu: df i j=--J uiiu? d f i j=k( l , ,  1,). ( 7 )  
BI Ba 

Here dfg is an element of surface area. 
The expression for k(l,, I,) can be represented in a form 

directly corresponding to (2) : 

where dSvk is an element of volume. In (8)  v v u  is an anti- 
symmetric covariant tensor, defined on S3-I,, and 

v,: dY'=lnd (Z, 1.). ( 9 )  
t 

Here Z is a two-dimensional oriented disk in S3 ,  and 
Ind(Z,l, ) is the index of the intersection of Z with 1,. Let us 
recall that the index of the intersection is defined as the alge- 
braic sum of the number of intersections of the oriented 
curve with the disk. We omit the detailed topological defini- 
tions connected with the concepts introduced here. For de- 
tails, see Ref. 13. 

The coefficients k(l,, I,) represent the numerical 
linkage invariants for I = (I,, . . . ,I, ). Let us define the first 
linkage coefficient for I as 

ii. (1) = m a x  I k (l,, 1,) ( . 
I 

If 1 can be deformed into unlinked curves, then z ( l )  = 0. But 
for a number of linkages, e.g., for the linkages shown in Fig. 
3, k(1) = 0, but the linkages have not been undone. Let us 
introduce higher linkage coefficients. Consider the linkage 
I = (I,, I,, I,). From the condition k(l,, I,) = 0 it follows 
that there exist a covariant tensor ui l2  on a,, and antisym- 
metric covariant tensors vv and v;12 on w,, (here w12 is a 
compact set in a,,) such that 

12 1 2  1 2  
Diuk =uIiukl ,  D ~ v ~ ~  = - V [  13 ..u k l ?  (10) 

112 1 2  Divjk =ul iu jk l .  

Let z(l) = 0 for I = (I,, I,, I,). It can be shown that the 
tensors 

,123- 12 3 I 23 
ujk -utj ~ k l + ~ [ j u k ]  , 

2 -  I2 S 1 2 5  
v . .  rlk - - v  [ijuk]+u[ijuk] , (11) 

,112s- 12 3 29 
V i j k  -U[( ~ j k ] + ~ [ i ~ j k l  

satisfy the conditions 

-125 -1  125 D , z ~ ~ ~ J ' o = D , v ~ ~ ~  =D~vijk , 

and that bz and b;y3 are defined on the entire sphere S ,. 
It is proved in Ref. 13 that there exists a whole number 

k,(l) such that 

It is this number that is called the second linkage coefficient. 
If these formulas are analyzed for the configurations of open 
curves, joined by, to use Arnol'd's terminology, "short" 
curves, then the formulas ( 12) give the asymptotic numbers 
of linkages of sets of three field lines. We can average them 
over all the sets of three field lines, and obtain new integral 
structure invariants for a magnetic field with k(l,, I,) = 0. 
This follows from the topological invariance of Eqs. (12) 
and the properties of H(x,t) ,  Eq. ( 5  ). 

3. MAGNETIC FIELD LINE RECONNECTION IN SLIGHTLY 
NONIDEAL MHD 

We shall define the reconnection process as the discrete 
transformation of the field H ( x )  at some fixed time t = to. 
We shall denote Ho(x,to - 0)  by Ho(x)  and Ho(x,to + 0)  
by H I  (x) .  Let M be that region in R where a magnetic field 
H0 is prescribed so that it touches its boundary. Let us con- 
sider some "open" area a that is smooth and sufficiently 
small. Let a segment AB of some Ho-field line lie in it (see 
Fig. 4).  The line AB divides ainto two parts: ACB and ADB. 
The area a comprises the "triangles" .rr,,, and .ir,,, , to- 
gether with their common boundary. Let us denote by n the 
smooth field of unit normals to the surface of a .  We choose a 
to be small, so that the conditions (n,Ho)lrAcB >O, 
(n.H,)aA, < 0 and (n,Ho) I,, = 0 are fulfilled. Let 

n+= lim (n+en) H rc-= lim ( n + ~ n )  
e t a  e t a  

be the two sides of the area a. We choose in M a  sufficiently 
small subregion a containing a. - 

That discontinuous transformation M ~ : X  -+ x' = X (x  ) , 
together with the corresponding transformation of H(x ) ,  
for which the following conditions are fulfilled is called a 
formal magnetic field line reconnection: 

a )  2 is smooth and reversible on the complement to ?i 
(where E- is a ,  together with its boundary), and continuous 
and reversible at the boundary of a; 

FIG. 4. The principal elements participating in the definition of reconnec- 
tion. The area T is hatched. That side of this surface which faces us is 
designated in the text as r,; the invisible side, as T- .  The vector n and 
three magnetic field lines are shown. 
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b) Xis discontinuous on a ;  
C )  2 can be smoothly continued on rr, and rr-. These 

continuations are denoted by X+ and 2 - ;  

- d)  Let a+ be the sum of the two areas 2, (a,,,, ) and 
( )  a -  the sum of 2 + ( ~ + , ~ ~ )  and 
X- ). Further, let a+ and a _ ,  as surfaces in R 3, coin- 
cide. Denote this surface by a. The relation between a and 
o, is the same as between a and a+ ; 

e)  Let a be the canonical mapping a+ -a- and B be 
the canonical mapping o+ -a_ .  It is assumed that the dia- 
gram 

is commutative, i.e., the sequence of mappings a,,,, 
-a_,,, does not depend on the choice of the path; 

f)  the mapping Q+:a+ ,cB - where - 
Q+ = (2,-'XX+) lrr+AcB, preserves AB, and is a diffeo- 
morphism; 

g) outside a the field H , (x )  is given in terms of %(x)  
and H,(x) by the formula ( 5 ) .  

It is assumed that the field H , ( x ) ,  which is initially 
defined only on the complement to a, can be sufficiently 
smoothly continued to the entire M. (This, in particular, 
implies that on a the normal component of H I  (x)  is contin- 
uous and the total H, flux through a equals zero.) This de- 
finition is the exact formulation of the intuitive reconnection 
picture described in Sec. 1. 

Practically all the conditions in the definition are geo- 
metrically obvious. Let us, nevertheless, note the following. 
The conditions d )  and e)  imply, among other things, the 
reversibility of the above-introduced H-field transforma- 
tion. The freezing-in condition obtaining outside the surface 
a (and, accordingly, a) is formulated in paragraph g). Con- 
dition e)  implies that, if two field lines I, and I, on different 
sides of AB each "snaps" into two parts, 1,-+1,+1,- and 
1,-I,+ + I,-, and the two halves I,+ and 1,- are "spliced," 
then the remaining field-line "tails" 1,- and I,+ also get 
spliced (see Fig. 4) .  The condition f) implies that the recon- 
nection process can be represented as a composition of a 
large number of infinitely small reconnections. 

From this definition follows the principal result of the 
paper, namely, the conservation of only one topological in- 
variant-the asymptotic Hopf invariant. This result can be 
obtained with the aid of the correspondence, introduced by 
Arnol'd,' between the asymptotic Hopf invariant and the 
asymptotic number of linkages of pairs of field lines. But the 
analytical proof presented below is technically simpler. 

Let us denote the complement in M of the area a figur- 
ing in the definition of reconstruction by Mc. Consider any 
smooth vector potential A,,(x) of the field H,(x). We intro- 
duce in Mm-the field A, (x) ,  which can be computed from 
A,(x) and X(x)  in accordance with (6); we shall denote its 
smooth continuation into a+ in the same way. In M,, 
H I (x)  = curl A, (x)  . Since  and H vary like density in a 
fluid element, 

If A, (x )  can be considered to be the vector potential of the 
field H,  (x)  in the entire M, then the identity ( 13) proves the 
invariance of the asymptotic Hopf invariant. But for arbi- 
trary A,(x) the tangential-toa-A, (x )  component, which 
we shall denote by A,, , turns out to be discontinuous in a ,  
and curl A, (x )  # H I  (x)  in a ,  or, more exactly, curl A, con- 
tains, generally speaking, 8-function discontinuities in a ,  
which, in particular, leads to an indeterminacy in the expres- 
sion 

It nevertheless turns out that we can, by using condition e),  
choose A, so that A,, will be continuous and sufficiently 
smooth in a. In order to show this, let us introduce in .rr,, a 
smooth function q, such that: a )  its smooth continuation into 
both AB and ACB is strictly monotonic; b) (V,p ( #O. Here 
V, is the gradient on the a- surface. Let us continue q, into 
.rr,,, in the following manner: 

In accordance with condition e) ,  the continuation of q, into 
a,, does not depend on which side of Q,, we take the 
point P. In accordance with this definition of q,, segments of 
any contour of q, that lie on different sides of AB "get 
spliced" in a after the transformation 2 .  Let us now choose 
A, so that A,, IIV,q,. If this condition is not fulfilled for A;, 
then we can choose $(x) so that A, = Ah + V$ satisfies it.'' 
This condition imposes limitations only on the values of q, in 
a .  For a curve y belonging to a,,, we have 

Here, besides the properties of A,(x), we have used: a )  the 
nondependence of J Adx on the time if the curve (which 
may be open) moves together with the fluid and A(x) satis- 
fies (6), and b)  the continuity of the normal-to a-compo- 
nent of H,. Thus, A,, is continuous, and, accordingly, 
H I  = curl A,. As noted above, 

which is what was required to be proved. 
Let us now consider the change H(x,O) - H(x,t) in the 

magnetic field, such that it generates a finite combination 
(composition) of diffeomorphisms of M and reconnections. 
The latter, according to the comment made above, can be 
extended in time. Thus, the resulting transformation of 
X(x,t) generates the transformation H(x,O) - H(x,t).  Such 
changes in the field simulate, according to the arguments 
adduced in Sec. 1, the changes that are found to occur in H at 
times r -g rd within the framework of MHD with v-0. It can 
be conditionally assumed that H(x, t )  and 
v(x,t) = d X[X-'(x,t), t]/dt are connected by the equation 
d H/dt = curl [vH] , which can now be understood in the 
generalized sense. 

The above arguments show that the asymptotic Hopf 
invariant, which is related6 to the asymptotic coefficients of 
linkage of field-line pairs, is conserved during such magnet- 
ic-field evolution. Of importance here is the existence of an 
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integral expression for the mean number of linkages. In spite 
of the fact that the individual linkage coefficients change 
during the reconnection process, the quantity k(1, , I ,  ) aver- 
aged over all the (I,, I, ) pairs, i.e., the asymptotic Hopf 
invariant, does not change. 

The situation is somewhat different in the case of the 
higher linkage coefficients k, (the formula for the second 
linkage coefficient is given in ( 12) ) . An integral representa- 
tion of the type ( 12) obtains in the case when is equal to 
zero. It is clear that the reconnection does not preserve the 
configurations with nontrivial coefficients ki . Indeed, linked 
pairs of field lines generally speaking arise in the course of 
the reconnection, and this destroys the integral representa- 
tions of the type ( 12). 

Next, let us introduce some sufficiently narrow class of 
magnetic configurations, and show that, if we allow magnet- 
ic-field evolution accompanied by reconnection, then no to- 
pological invariants, except the asymptotic Hopf invariant 
(in simply connected regions), are conserved on this class. 
Let us consider a magnetic-field configuration with h = 0, 
consisting of a finite number of closed tubes of force with 
identical fluxes and the following property: In their interior 
they differ from a set of unlinked field lines that close up on 
going around once along a tube only by rotation through a 
finite angle about the tube axis at some cross section of the 
tube, i.e., we can introduce at each cross section of a tube a 
"polar" coordinate system such that all the coordinate lines 
go over into coordinate lines in the transformation generated 
by traversing the circumference of the tube along field lines, 
i.e., the interior of each tube is constructed like a deformed 
"tokamak" with a constant rotational transform angle. 

The configuration under consideration can be reduced 
to a single unknotted tube through a finite number of recon- 
nections. Each reconnection gives rise to an additional rota- 
tion of the field lines inside the tubes through a constant 
angle. Therefore, all the field lines inside the obtained tube 
will be rotated through some constant angle relative to the 
tube "axis." The Hopf invariant is conserved in such a trans- 
formation, and the angle of rotation is proportional to it. 
Therefore, this angle is equal to zero, and all the field lines in 
the resulting tube will be unlinked. This argument shows 
that there are no other invariants, except the Hopf invariant, 
in the class of fields under consideration. It can be carried 
over to configurations with arbitrary h #O. 

The class of magnetic fields considered, including those 
with h #O, apparently possesses the property that any field 
H can be approximated by fields from this class with an 
arbitrarily high degree of accuracy. Consequently, there are 
no invariants (except the asymptotic Hopf invariant) that 
continuously depend on H(x) .  From the physical stand- 
point, this implies the absence of any other invariants, except 
the asymptotic Hopf invariant, in processes that admit of 
reconnection in the sense defined by us. Let us recall that the 
individual total magnetic-field fluxes are also conserved in 
multiply connected regions. 

The authors are grateful to V. V. Yan'kov for a stimu- 
lating discussion of the questions considered in this article 
and to S. V. Bulanov, whose comments enabled us to detect 
an error in the first version of the article. 
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