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Expressions are obtained for the partition functions of spin systems of spins = $ and s = 1 in 
terms ofthe partition functions of systems in which the spin matrices are replaced by bilinear 
combinations of Fermi operators. This leads to a representation of the partition functions (and 
Green functions) of the spin (s  = 5 ands  = 1 ) systems by functional integrals and to a simple 
temperature diagram technique with Matsubara frequencies w ,  = 2.rrT(n + d )  fors = 4 and 
w = 2 r T ( n  + f ) for s = 1. The approach developed is illustrated in application to the Dicke 
model and the Ising-Heisenberg model. For the Dicke model rigorous results are obtained for the 
N -  co asymptotic forms ofthe partition function and collective-excitation spectrum. The 
analogous formulas for the Heisenberg model are asymptotically exact in the limit of low 
temperatures. 

1. INTRODUCTION 

The Hamiltonians of many systems in statistical phys- 
ics contain spin matrices. To this class belong ferromagnetic 
systems and quantum-optics models describing the interac- 
tion of an electromagnetic field with two-level atoms. The 
diagrammatic perturbation theory for spin systems is sub- 
stantially more complicated than the standard Matsubara- 
Abrikosov-Gor'kov-Dzyaloshinkii diagram technique. ' 
Many authors have proposed variants of the diagram tech- 
nique that are based on different representations of the spin 
matrices by Bose or Fermi However, the fact 
that the dimensionality of the space in which these operators 
act is always greater than the dimensionality of the spin ma- 
trices leads to the problem of the elimination of the superflu- 
ous states and to a substantial complication of the correspon- 
dence rules between the diagrams and their analytical 
expressions. 

In the present paper we construct a simple diagrammat- 
ic technique for spin-f and spin-l systems that differs from 
the known techniques in the form of the Green function. For 
spin-f systems the Green function 

eter (withil = 0 ,  ( 1.3) is the Ising model; withil = 1 it is the 
spherically symmetric Heisenberg model]. 

The Dicke Hamiltonian 

contains not only u-matrices describing the two-level atoms 
but also the creation operator $ + and annihilation operator 
$ for the single-mode radiation field. 

2. THE DIAGRAM TECHNIQUE AND FUNCTIONAL INTEGRAL 
FOR SPIN SYSTEMS 

h 

We shall denote by H, the Hamiltonian of a spin system 
of the type ( 1.3) or ( 1.4). The derivation of the diagram 
technique for spin-; systems is based on representing the u- 
matrices 

by bilinear combinations of Fermi operators: 

has in our approach Matsubara frequencies proportional to 
and on the basic formula for the partition function Z ,  of the 

n + 1/4, while for spin 1 we have 
spin system: 

( I 2  z,=s~ exp (--pA,)=iN ~p exp {--p( l j ,+inG/2p)) .  (2.3) 
and the Matsubara frequencies are proportional to n + 1/3. A A 

In other respects the diagram technique is standard and does 
Here HF is the operator obtained from H, by the replace- 
ment (2.2), and 

not contain the complicated combinatoric rules characteris- 
tic of most of the known variants of the diagram technique N 

for spin systems. The approach developed is illustrated in = z (a,+ai+bi+bi) 
applications to the single-mode Dicke model and to the Is- i-i (2.4) 
ing-Heisenberg model with Hamiltonian (N  is the number of sites in the system). 

1 1 The fundamental problem in using the fermion substi- fi = - pH oiZ+ I(i-j) (- otoi+?v20i+o,- 
I 4 tution (2.2) is that the u-matrices (2.1 ) have dimensionality 

i+l 2 while the fermion space corresponding to the ith site is 
( four-dimensional, being generated by the vectors 

Here 6 and a,' are the spin matrices of the ith site, H i s  the ai+@o=l1, O),, bi+Qo=lO, 4>i,  
magnetic field, p is the magnetic moment, I(i - j )  is the 
interaction constant of the ith and jth sites, and il is a param- @0=[0,  O ) i ,  aj+bi+Qo=l 1, 1);. (2.5) 
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Here @, is the vacuum vector. We shall call the first two 
vectors (2.5) physical, and the other two nonphysical. The 
physical vectors generate a two-dimensio~al physical sub- 
y a c e  characterized by the condition N,@ = @, where 
N, = a,  + a ,  + b, + b, is the operator of the number of fer- 
mions at the ith site. The direct product of the physical sub- 
spaceszf all thzsites forms the sector in which the Hamilto- 
nians H, and H, coincide. 

To prove the basic formula (2.3) we write 

A A 

where H,, is that part ̂ of HF which contains the spin opera- 
tors of the ith site and H '., is the entire remaining part. For 
Hamiltonians of the Ising-Heisenberg type (1.3) or Dicke 
type ( 1.4) we have 

where junphys > , are the nonphysical vectors of the ith site. 
Therefore, the trace over the nonphysical states of the ith site 
vanishes: 

Spi ,,,h,, exp { - p  ( ~ ~ + i n m l 2 b ) )  

=exp{--p(~,i '+inl0//2~))  Spi unphya(- i)di  '0, 
A 

since S p i u , , , , , , ( - i ) N ' = ( - i ) ~ + ( - i ) 2 = 1 - - 1 = 0  
(on the nonphysical vectors 10, O), and 11, I ) ,  the operator 
h 

N, has eigenvalues 0 and 2, respectively). As a result, in the 
calculation of the trace all the non~hys icg  states 2re elimin- 
ated, while on the physical states H, = H, and N@ = N@. 
Therefore, 

which proves (2.3). According to (2.3), when investigatkg 
spin systems with s = 1 we must use the Hamiltonian H, 

h 

with the extra term i?rN/2P, i.e., with a purely imaginary 
chemical potential ,u = - ia/2P. On the basis of (2.3) we 
can construct the standard (for Fermi systems) diagram 
technique with the Green function 

Here w, = 2 n p  - ' ( n  + 4) is the fermion Matsubara fre- 
quency: 

Thus, we arrive at a Green function with Matsubara 
frequencies proportional to n  + +. 

A 

We now consider a system with Hamiltonian H ,  con- 
taining spin-1 a-matrices: 

Here the basic formula has the form 

h h 

where HF is obtained from H,  by the replacement 

The proof of t i e  form!la (2.8) is based on the fact that 
the Hamiltonians H, and H, coincide in the sectors with A i  
@ = @, and also in the sectors with A,@ = 2@, while the 
contributions to the right-hand side of (2.8) from the non- 
physical states with A , @  = 0 and ii,@ = 3@ cancel each oth- 
er in the same way as occurred in the case of spin s = 1. 
Therefore, 

S P ~ X P  { - ~ ( f i ~ + i n @ / 3 ~ ) ) = [ ~ p , ; , ~  =,, exp (--$If,) 1 
x i e x p i  - in/3)  +exp(-2ni /3)  1 N = [  -2i cos ( n / 6 )  lNz,, 

whence follows (2.8 ) . 
The Green function for a system of s = 1 has the form 

where w = w, - ?r/38 = 27$ - ' ( n  + f ),i.e., for a system 
with s = 1 the Matsubara frequencies are proportional to 
n  ++. 

The basic formulas (2.3) and (2.8) make it possible to 
go over from spin matrices to Fermi operators and then to 
write the partition function and Green functions in the form 
of functional integrals8 For example, the ratio Z ,  /Z,, of 
the partition function of a spin-; system to the partition func- 
tion of the corresponding free system is a formal quotient of 
functional integrals: 

where 

The quantity S is the Euclidean action on the interval 
O<r<&a, *(r ) ,b ,  (7)  and b, *(T) are anticommuting Grass- 
mann variables corresponding to the Fermi operators 
a,,a,+, b, and b 7 ;$(T) and $*LT) are variables correspond- 
ing to the remaining fields in H (e.g., the^radiation field in 
the Dicke model); H(T) is obtained from H by replacing the 
operators by the fields corresponding to them at the time T. 

536 Sov. Phys. JETP 67 (3), March 1988 V .  N. Popov and S. A. Fedotov 536 



The integration variables in (2.10)  satisfy the boundary 
conditions 

( W  = 2nnfiII ' ,  p = 2 n ( n  + d)f i  - I ) ,  we write the action S 
and the measure Dp in the functional integrals (2.14)  in the 
form 

ai(p)=-ai(O) bi(p)==-bi(0) ( Fermi ). (2.12)  

By making the replacements 

in bi ( r )  +bi ( r )exp  (E T) , b. ' (r)  - b.*(T) e x p ( -  28 T), 
2 P 

(2.13)  

which cancel the terms with n (7 )  in ( 2 .  l o ) ,  we obtain 

where S is the action (2.1 I ) ,  and the integration is per- 
formed over the Grassmann fields with the boundary condi- 
tions 

a i ( p )  =ia i (0) ,  a i d ( p )  =-ia,* ( 0 ) ,  

Analogously, for a system with spins = 1 we obtain the rep- 
resentation (2 .14) ,  in which the Grassmann Fermi fields 
satisfy the conditions 

a,(P) =e'x'3a,(0), bi( p )  =e'"I3bi(0), c, ( P )  =e's13ci(0), 

3. THE PARTITION FUNCTION AND COLLECTIVE- 
EXCITATION SPECTRUM OF THE DlCKE MODEL 

In Ref. 9, the present authors obtained and rigorously 
proved asymptotic (for N -  CU, where N is the number of 
atoms) formulas for the partition function of the "fermion" 
Dicke model. The Hamiltonian of this model 

is obtained from the Hamiltonian of the Dicke model ( 1.4) 
itself after the fermion substitution ( 2 . 2 ) .  Now, having the 
representation (2 .14)  for 2, /Zoo,  we can also obtain analo- 
gous results for the Dicke model itself. In the right-hand side 
of (2 .14)  Sis  an action of the form (2.11 ), constructed using 
the Hamiltonian (3.1 ), and the integration variables satisfy 
the boundary conditions (2 .15) .  

By expanding the integration variables of (2.14)  in 
Fourier series 

bi ( r )  =B-'"z bi ( p )  elpT 

From ( 3 . 3 ) ,  by the standard rules, we obtain the following 
rules for the diagram technique: solid lines correspond to 
G,,, = (ip f W 2 )  I ,  with p = 2n-D ' ( n  + 1 / 4 ) ,  dashed 
lines corresponds to D = ( iw  - w,) - ', with w = 27rn/fi, 
and a vertex at which a dashed line terminates on a solid line 
corresponds to g ( D N )  ' I 2 .  

The ratio of functional integrals in (2.14)  can be under- 
stood as the ratio of the finite-dimensional integrals obtained 
with cutoffs in the sums in ( 3 . 2 )  ( w  I < w,,lpl < w,) in the 
limit when these cutoffs are removed ( w ,  , w ,  - cc ) . 

The variables a, ( p )  ,a, ( p ) , b ,  ( p )  , and b (p) appear 
quadratically in the action, and we can integrate over them: 

ZJZ,.= ,f Dp ($) eso[*] det" M ($,$*) / 
j Dp ($) e"[*l detN M (0 ,O) .  

Here 

s . [ ~ I = ~  ( i w - o o ) $ * ( o ) $ ( 0 ) .  
0 

where M is an operator with elements 

PIpq = 
( (ip+Q/2) 8.,, g (PN)-"W(p-q)  

g!PN)  - ' b $ ( q - ~ ) ,  ( ip-Q/2)  6 ~ 7  

Carrying over the factor detN M ( 0 , O )  from the denominator 
to the numerator of ( 3 . 5 )  and making the replacement (for a 
justification, see Ref. 9 )  

( 3 . 8 )  

we bring ( 3 . 5 )  to the form 

Here 

det ( I + A )  =det M-'"(0, O ) i M ( $ ,  $*) M-'"(0, O ) ,  (3 .10)  

so that A is determined by the formulas 
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The expression 

has the meaning of the effective action of the radiation field. 
In (3.9) we have no longer a formal quotient of func- 

tional integrals, but the integral having a finite limit as a , ,  
w, - cc . The representation (3.9) is convenient for the deri- 
vation of the asymptotic form of Z, /Z,, for large Nby the 
stationary-phase method. For T >  T, there exists one point 
of stationary phase (the coordinate origin), while for T <  T ,  
we have a circle of stationary 
~hase(l$(O) 1' =p,,,$(w) = $*(w) = 0 for o # O ) .  

For the proof of the asymptotic formulas for Z, /Z,, 
the space of the integration over the Bose fields $ ( a )  and 
$* ( w )  is divided into two regions: the neighborhood of the 
point (or circle) of stationary phase, and its complement. 
The integral over the first region can be calculated approxi- 
mately, and the error that arises can be estimated rigorously. 
The integral over the second region can also be estimated 
rigorously. In our case of the Dicke model itself the tech- 
nique used for the estimates repeats verbatim the technique 
developed in Ref. 9 for the fermion Dicke model. The only 
difference is that in the fermion model the frequencies in the 
operators M and A are proportional to n + 4, while for the 
Dicke model itself they are proportional to n + 1/4. With- 
out repeating the calculations of Ref. 9, we give the asympto- 
tic formulas for the integral (3.9): 

Here, 

where flf, = fl' + 4g'A2, in which A (for T <  T, ) is deter- 
mined by the equation 

The temperature T, = PC 'of the transition to the superra- 
diative state is determined from this equation with A = 0 
and RA = R. We note that for the fermion model 
tanh(PRA/2)  in (3.15) is replaced by tanh(PR d 4 )  and 
the transition temperature is found to be lower by a factor of 
2 than in the Dicke model itself. 

The structure of the infinite products in the asymptotic 
formulas (3.13) for Z ,  /Zo, carries information about the 
spectrum of the collective excitations of the system. 

The Bose spectrum is obtained by equating to infinity 
the general factor in the infinite product for the partition 
function (3.13), after replacing iw - E in this factor. The 
equations for the spectrum 

(in which we must replace iw - E) have solutions 

Equations (3.13) are the most exact of the known ones 
(and, furthermore the most rigorously proved results) for 
the Dicke model itself. Multimode variants of models of the 
Dicke type, and also Dicke models with an interaction that 
takes nonresonance terms into account, can be investigated 
analogously. 

4. DIAGRAM TECHNIQUE FOR THE ISING-HEISENBERG 
MODEL 

The representation (2.14) for Z, /Zo, is also true for 
the Ising-Heisenberg model ( 1.3). Going over to the mo- 
mentum representation, with allowance for the boundary 
conditions (2.15) by means of the formulas 

a i ( l ) = ( p ~ ) - " ~ z  exp[i(pr+ik) ]a(k, p) ,  
k , ~  

bi( l )  = ( p ~ ) " ~  exp[i(pr+ik) ] b (k, p ) ,  
k , ~  

(4.1) 

we obtain 

where S = So + S, , 
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in which 

O+ ( k ,  W )  = (pN)-"" z a* (k t .  P A  b (kt. P J .  
k,-k,=k 

p,-p*=o 

o- (k ,  w) = (pN) -" x b* (k,, p i )  a&,, P,) . 
kt-k,-k 

p,-p1=o 
(4.5) 

As a consequence of the boundary conditions (2.15) the fre- 
quencies in the expansion (4.1 ) have the form p = 237-0 - ' 
( n + J ) .  

The averages of products of the quantities a' and u+ 
are of immediate interest. Therefore, it is convenient to rear- 
range the representation (4.2)  by introducing into the nu- 
merator and denominator Gaussian integrals over auxiliary 
Bose-type fields p, ( k ,  w )  ( i  = 1 ,  2, 3 )  : 

where (. . .) denotes functional averaging with weight exp 3. 
We shall consider the diagram technique that arises in 

the calculation of the integrals in (4.9) .  In  deriving the tech- 
nique we must take into account that for H # O  the average 
(p, (0,O) ) is nonzero, while at  T = T, the system undergoes 
a phase transition associated with the onset, as H-0 and 
N -  W ,  of a nonzero magnetization (this corresponds to 
Bose condensation of the field p, ) We shall take account of 
the Bose condensate of the field p, by making the shift 

after which the action takes the form 

S=So[@l+S,[a, bl +Sin, [ a, b, @ I  -'I,pNp2J-' ( 0 ) ,  

where 

Making next the shift 1 
+a+ ( k ,  o )  $(k, w) I- T(pN)'"J-l  (0)  pQ (0,O). 

.cpl(k, o )  -cpt ( k ,  o )  +hJ(k)  (ac(-k,  -o) +a-(k, o ) ) ,  
~ ( k ,  o )  +q2(k,  o )  +ihJ(k) (a-(k ,  a)-o+(-k, --a)), 

cps(k, o)-ccp3(k, o ) + J ( k ) o Z ( k ,  o ) ,  
(4.8) Taking as the free action the quantity 

So [@ ] + S, [a,b 1, we obtain a diagram technique with the 
which cancels the four-fermion term in S, we obtain following elements (lines and vertices) : 

ZO/Z~O = 5 e g ~ p  [a,  b,  'PI/! ePQ [a,  b. ql. 

where - -'12(fiN)'"pJ-' ( 0 ) ,  

The averages of d and a* are related to averages of the new 
variables p, , $, and $* by simple formulas: -?,I ( fiN) ' I , ,  

(4.16) 
(o z ( k ,  o)>=-JP1(k)<q3(k, o )  >, 

in which the momentum and frequency are conserved at 

<az ( k ,  a) a' (-k, -o) > each vertex. 
The parameter p defining the shift of the field p, is 

=-2J-'(k)+P2(k) ( q S ( k ,  o )q3 ( - k t  -0)  ), found by kquating the average (9, (0, 0 ) )  to zero, corre- 

(a+ ( k ,  o )a -  (-k, )=- 1-1 ( k )  + J - z ( ~ )  (+* ( k ,  o) t  ( k ,  ), sponding to a zero contribution from all diagrams with one 
external line. Graphically, the condition (@, ) = 0 has the 

(4.12) form 
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where the double lines correspond to the exact Green func- 
tions G,,, ( k , p )  of the fields a and b. Analytically, Eq. (4 .17)  
has the form 

We note that the parameterp equals, apart from a factor 
[ W ( O ) ]  -I, with the magnetization of the system. A non- 
zero solution of Eq. (4 .16 )  for N- w and H - 0  corresponds 
to the ferromagnetic state. 

Only the Green functions of the fields @,, $, and $* 
depend on the momentum, and, therefore, the expansion of 
the averages (4.11 ) in loops containing these Green func- 
tions corresponds to an expansion in the inverse range of the 
interaction. 

The diagram technique constructed differs from the 
technique for Fermi systems only in the form of the frequen- 
cies appearing in the Green functions of the fields a ( k ,  p )  
and b ( k , p ) .  We note that the Dyson equations for the exact 
Green functions of the fields @, , $, $*, a, and b  are equiva- 
lent to the Larkin However, the diagrammatic 
series for the self-energy parts are constructed considerably 
more simply in the present approach than in Refs. 2  and 4.  

The variables a, a*, b,  and b  * appear in S quadratically, 
and the integral over them is equal to the determinant of the 
matrix M of this quadratic form: 

q (k - k t ,  p - Q) h.IC, ( k  - k', P 9 )  I ( i ~  + T ) 6 p q 6 k k '  + 2 (pN)'ls ' (pN)'l2 
M k ,  p; k'q = 

h+* (k' - - k ,  q - p), PH q ( k  - k', P-9) I (PN)l" 
, (ip - 6pq6kk,- 

d 2 ( ~ N ) ' / s  

This gives one further represenation of Z ,  /Z,,: 

ZO/ZOO= D P [ ~ I ~ X P  ( s e f f )  / j ~ p [ g l e x p { ~ ~ [ q l ) .  (4 .20)  

Here 

is the effective action, depending on variables p,, $, and $* 
that are directly related to the spin operators d and u+ . 
The effective action is nonpolynomial in the fields p, , $, and 
I)*, and it is essentially this which leads to difficulties in the 
formulation of the perturbation theory directly in terms of 
the spin operators. 

A representation of the partition function of the Heisen- 
berg model with arbitrary spin in the form of a functional 
integral with a nonpolynomial action containing three Bose 
fields, with the nonpolynomial part of the action having the 
same structure as In det(MM,-') in ( 4 . 2 1 ) ,  has been ob- 
tained by Kolokolov.'o"' 

For the Ising model det M can be calculated in closed 
form. We have 

det (MM,') 

where 

x I -  - ~ - ~ / ~ z  pa ( k ,  0) eikl,  

while for the partition function of the Ising model we obtain 
the well-known representation 

where 

R ( i -  j) =N-')I I-' ( k )  exp{i  ( k ,  i-  j) ) . 
k 

In the general case of the Heisenberg model we can cal- 
culate the N -  m asymptotic form of the partition function 
approximately by the method ofstationary phase. For exam- 
ple, for the spherically symmetric model ( 2  = 1 ) s,, has a 
nonzero point of stationarity [p, ( i ,  7) = p, $ = $* = 01, 
and Eq. (4 .17 )  for the parameter p reduces in the one-loop 
approximation to the molecular-field equation 

Calculation of the second variation of S,, gives 

(4 .26 )  

where 

For the asymptotic form of the partition function of the 
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spherical Heisenberg model in the one-loop approximation 
we obtain 

z.'"exp(s.f.'(o)} n [I-J(k)bl(p) I-' 

9 

k,- 
8 (p) -io 

(4.28) 

where 

From (4.28), by equating 1 - J(k)b(p) [R(p) - iw ] - '  
(iw - E) to zero, we obtain the well-known expression for 
the spectrum in the molecular-field approximation: 

E (k) --8 (p) -l(k) b (p). (4.30) 

It is also not difficult to obtain corrections to the molecular- 
field approximation. 
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