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A theory is derived for the propagation of heat pulses in crystals which contain two-level centers 
with an energy gap A under the condition A -- k ,  T*, where k, T* is the average energy of the 
phonons in the heat pulse. In addition to the elastic scattering due to point defects, there is a 
strong Raman scattering of phonons in this case, with a pumping of two-level centers. This 
interaction causes a redistribution of energy between nonequilibrium phonons and two-level 
centers. It slows down the energy transfer in the crystal substantially. An analytic expression is 
derived for the response of a bolometer. A family of curves is plotted to show possible shapes of the 
temperature dependence of the time at which the signal maximum arrives. The nature of these 
curves is determined by the relation between the length of the crystal and the average distance 
over which a phonon diffuses before a Raman-scattering event occurs. 

Nonequilibrium phonons injected into a crystal at low 
temperatures can undergo a variety of interactions. The na- 
ture and intensity of these interactions determine the nature 
of the signal recorded by a detector. The propagation of heat 
pulses in crystals under conditions such that the scattering of 
the nonequilibrium phonons is important (in contrast with 
ballistic propagation of these phonons) has been studied 
most thoroughly for the case of a defective anharmonic crys- 
tal. In such a crystal, defects cause an intense elastic scatter- 
ing of phonons. Anharmonic processes, which are slower at 
low temperatures, are responsible for changes in the spec- 
trum of nonequilibrium phonons as they propagate. Various 
regimes for the propagation of these phonons may be real- 
ized, depending on the relation between the intensities of 
elastic and anharmonic scattering.14 

If a crystal contains two-level systems with an energy 
A -fiiS, where Z is a characteristic frequency of the injected 
nonequilibrium phonons, the interaction with two-level sys- 
tems may turn out to be the most intense interaction for 
resonant phonons (h = A). To describe transport pro- 
cesses under these conditions, it is convenient to distinguish 
three subsystems: the resonant phonons, the two-level sys- 
tems (spins), and the nonresonant phonons. We take ac- 
count of all interaction processes which couple these subsys- 
tems. 

The interaction between nonresonant and resonant 
phonons either is due exclusively to anharmonic effects or is 
manifested indirectly, through the spins. The interaction be- 
tween the nonresonant phonons and the spins is in turn due 
to processes involving several phonons. These processes cor- 
respond to a perturbation theory of higher order than that in 
which we find the one-phonon processes in which resonant 
phonons interact with spins. Apparently the most important 
of these processes are the Raman scattering of phonons by 
spins5 and three-phonon spin-lattice interactiom6 An equi- 
librium in the system consisting of the resonant phonons 
plus the spins is thus reached far more rapidly than a com- 
plete equilibrium is reached throughout the system. 

In order to describe time-varying transport processes in 
this system, it is important to know the time scales involved. 
If we are discussing the evolution of a heat pulse over a time 
interval no longer than the time scales for the relaxation to a 
complete equilibrium in the system, then we can discuss 

transport processes independently in the system of nonre- 
sonant phonons and in the system of resonant phonons plus 
the spins. Under these conditions, the two-level systems may 
have a negligible effect on the propagation of nonequilibri- 
um phonons, because most of the energy of the heat pulse is 
carried by nonresonant phonons. The integral response of 
the bolometer will be essentially independent of whether the 
crystal contains two-level systems. The occupation numbers 
of the two-level systems, on the other hand, become func- 
tions of the coordinates and the time because of their interac- 
tion with resonant phonons. If the intensity of radiative tran- 
sitions between corresponding states is sufficiently high, one 
can observe a luminescence induced by the heat pulse from 
any point in the crystal. One can also study the transport of 
electronic excitation through the crystal and the characteris- 
tics of the resonant phonons.'-" 

We will not be discussing that case here. Our purpose in 
this paper is to analyze instead the case in which energy is 
redistributed among the various subsystems as the nonequi- 
librium phonon propagates. As we will see below, such a 
situation is completely feasible experimentally. We would 
expect that a large fraction of the energy of the nonresonant 
nonequilibrium phonons might be transferred under these 
conditions and would accumulate in the subsystem consist- 
ing of the resonant phonons plus the spins; such events 
would have some important observable consequences. 

We consider a crystal containing N * two-level systems 
with a spectrumg(~) ( g ( ~ )  #Oat E E  A). We assume that the 
crystal has a fairly large number of defects; i.e., we assume 
that there is a strong elastic scattering of phonons in the 
crystal. For simplicity we restrict the analysis to the case in 
which the propagation of the nonequilibrium phonons can 
be described in a one-dimensional problem. Assuming that 
the temperature of the heat reservoir is low, To < 4.2 K, and 
assuming that the heating of the generator is slight, 
ST/T< 1, we completely ignore effects associated with the 
lattice anharmonicity. For typical insulators at Tc4.2  K, 
the time scales for the coalescence and decay of phonons 
through lattice anharmonicity are on the order of l o p 3  s. 
We thus assume from the outset that the basic features which 
stem from the specific nature of the interaction in this case 
are manifested far earlier. 

In the absence of two-level systems, with a strong 
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phonon scattering by defects, and without an anharmonic 
scattering of phonons, the motion of the nonequilibrium 
phonons in the crystal can be described by a one-dimensional 
diffusion equation for each group of phonons with a fixed 
energy and a diffusion coefficient D(w)  
= ( 1/31 V:T~TO(W), where r o ( o )  is the time scale of the elas- 

tic relaxation of phonons with defects, and V, is the sound 
velocity. 

We now consider the propagation of nonresonant non- 
equilibrium phonons in a crystal which does have two-level 
systems. We denote by T ,  ( w )  the lifetime of a phonon with 
an energy with respect to Raman scattering accompanied 
by the excitation or deexcitation of the two-level system. By 
virtue of the discussion above, we assume T,  3 max{?,,ir, 1, 
where 7;, is the lifetime of the resonant phonons with respect 
to capture by a two-level system. Over a time T ,  % T ~ ,  the 
nonresonant phonons undergo many elastic collisions, and 
they travel a distance on the order 1, ( w )  
- ( D ( ~ ) T ,  (w))'".  In each event of Raman scattering of 
phonons by a two-level system, the energies of the phonons 
before and after the collision differ by & A. On the average, 
therefore, each phonon of the group of nonresonant non- 
equilibrium phonons gives up its energy to the spins over a 
time r,  ( a ) ,  having diffused a distance 1, ( w )  over this time. 
We thus have a Raman pumping of the spin subsystem by the 
nonequilibrium phonons. Just how important this process is 
depends on the relation between 1, ( w )  and the sample 
thickness L. If I, ( w ) / L  < 1 ,  there is a high probability that 
each phonon will give up an energy A to spins, on the aver- 
age, as it diffuses through the crystal. Since we have 
A -65- k  , T * -- k  T,, by assumption, the energy accumu- 
lated in the system of spins is on the same order of magnitude 
as the energy of the injected nonequilibirum phonons. The 
condition 1, ( w ) / L  < 1 can be rewritten as 
r, ( w )  < L ' / I ) ( @ ) .  For phonons with a frequency 75, this 
condition means rR (W) < L 2/D(75) ~ t , ,  where t ,  is the ar- 
rival time of the maximum of the deviation of the phonons 
from equilibrium in the scattering of phonons by the defects. 

If T ,  (75) $ t,, the Raman pumping cannot cause any 
significant redistribution of heat-pulse energy between the 
subsystem of the nonresonant phonons and the subsystem 
consisting of the resonant phonons plus the spins. The Ra- 
man pumping can be quite pronounced even under the con- 
dition T ,  ( Z ) / t ,  > 1. The reason is that the decay of the num- 
ber of nonequilibirum phonons at t  > t ,  is known to be very 
slow, N ( t )  cc t - ' I 2 ,  in the case of one-dimensional diffusion. 
For this reason, even at t  > t ,  the crystal still has a substantial 
fraction of the nonequilibrium phonons. There is a high 
probability that these phonons can transfer their energies to 
spins in Raman-scattering events. 

Previous discussions of the possibility of an accumula- 
tion of energy comparable to the energy of the heat pulse in 
the system consisting of the resonant phonons plus the spins 
have implicitly assumed that the heat capacity of the spin 
subsystem is greater than that of the lattice. At temperatures 
T<4.2  K this condition holds for typical insulators if the 
concentration N * of two-level systems with A -- k  To is at 
least 10" cm- 3 .  Below we assume that this condition holds. 

In addition to the Raman pumping of the spin subsys- 
tem, we need to consider spin-lattice relaxation. Here we will 
consider only two channels for this relaxation: direct and 
Raman processes (although we could also take into account 

Orbach relaxation, for example). Apparently the most 
probable situation is that in which direct processes are pre- 
dominant, i.e., the situation T,, <rsR,  where rsd and r,, are 
the spin-lattice relaxation times for direct and Raman pro- 
cesses, respectively. The relation between the times and 
T ~ ,  and that between T ,  and r,, depend on the spin concen- 
tration N *. If .rf, /T,, < 1 ,  a capture effect occurs for the reso- 
nant phonons. Under these conditions, with Raman pump- 
ing of t!.! spin subsystem, the energy of the heat pulse 
accumulates in the spin subsystem, and the resonant phon- 
ons are responsible for the transport of electronic excitation 
through the crystal over time intervals no greater than T ~ ,  . 
In the case ?,/T,, % 1 ,  the spin system is an intermediate 
participant. First, the nonresonant nonequilibrium phonons 
transfer energy to the spin system in the course of the Raman 
scattering. The spins quickly relax, emitting resonant phon- 
ons. As a result, the energy and number of resonant phonons 
increase sharply. If the interaction of the resonant phonons 
with the spins is very intense, the diffusion coefficient for the 
resonant phonons and thus the velocity at which an elec- 
tronic excitation moves through the crystal are low. For this 
reason, Raman relaxation processes must be taken into ac- 
count. An alternative approach here might be to consider 
spectral diffusion, as a result of which the spatial diffusion 
would be due to phonons in the wings of the corresponding 

An analysis of the propagation of nonequilibrium phon- 
ons under these conditions should obviously be based on the 
s~lut ion of a system of three coupled kinetic equations for 
the distribution functions of the nonr -.sonant nonequilibri- 
um phonons, the resonant nonequilibrium phonons, and the 
spins. 

Let us assume that the sample is plate-shaped with Z 
axis along the normal to the surface of the plate. We denote 
by N ( k  j;z,t), z ( k  j;z,t) and Sf, (z , t )  the nonequilibrium 
increments in the distribution functions of the nonresonant 
phonons, the resonant phonons, and the spins, respectively. 
Here k is the phonon quasimomentum and j is the index of 
the phonon branch. The quantity Sf, (z , t )  describes the 
probability for a spin to be in an excited state. The system of 
kinetic equations for N ( k  j;z,t), %(k  j;z,t), and Sf ,  (z , t )  is 

Here If, {N}  and If, {N}  are the integrals for the collisions of 
phonons with defects; I,(N,Sf, ) is the integral for the 
collisions of nonresonant phonons with spins; I,{Sf, ,N,% 
is the integral for spin-phonon collisions; 6 is the cosine of 
the angle between the phonon wave vector k  and the Z axis; 
the quantity a ( w )  describes the spectrum of the phonons 
which are generated; and &a (w  = A/f i) .  In the one-di- 
mensional problem, the phonon distribution function de- 
pends on 6 alone. For simplicity we have omitted from Eqs. 
( 1 ) the index j, which specifies the phonon branch. After we 
linearize the collision integrals I,, {N,Sf , }, I, {%,Sf , 1, 
and Isf{Sf ,, ,N,Z} = I${Sf ,  ,KT) + I${Sf ,  ,N}, where I $  
{Sf ,  ,N} and I,;. {Sf ,  ,N) describe, respectively, direct and 
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Raman spin-lattice relaxation, and after we carry out several t 

simple manipulations, we can rewrite kinetic equations ( 1)  bfA(z, r )  = dtf expi- ( t - t f ) / r a~  {th. PA F(z* t ' )  
as follows: -- 3 ~~d 

dN dN N - + V,E - at Bz +z 
- F 1  n a  -- 

T -I ? ( T I  exp {B (fro + A)) Sf A 

+ AF< + BF> + a6 (2) 6 ( t ) ,  

aN alv 1~ P tif. -+ a t ~ . ~ - + - = - + - o t h z ( ~ ) + e 6 ( z ) ~ ( t ) ,  az  T o  Pf, 

d8f. df. F ( F A )  1  F -+-=-thZ - +- - 
I .  

at T .  Tad 2 ' N .  T R  

(2)  

Here 

1 1 1 1 1 1  -=-+- , - =-+ -, F,=F(lio-A) 
Ti3 TO Ts Tad t a ~  

1 1 1  
, #,-To a=-  P,=F(hu+A), -=-+- i =  ( :), 

P Po z,, 

1 

The quantities T, and T; are introduced by means of 

The first two equations of system (2)  can easily be recast as 
integral equations with the help of the Green's function 
G(z,t) = O(t)e-"'S(z - Vsgt) for the equation 

The kernels of the integral equations contain exponential 
functions of the type e - "- "'" , so the integration is domi- 
nated by the region determined by the condition 
( t  - t ')/Tz 1. For this reason, we expand the functions of 
the variable z - V,l(t - t ' )  in powers of the parameter 
V,l(t - t ' ) / z ~  V, T/Z< 1. Since we will be needing only 
phonon distribution functions averaged over angle, 
F(z,t) (N(z,t) ) and F(z,t), we give the resulting expres- 
sions for the Fourier transforms of these functions, F(q,R) 
and %yq,n) : 

Here 

yIF(q, Q)=azL(q, Q)., 

and 

Here a; is the volume of the unit cell; 

where R, = l / ~ ~ .  Here, as above, all quantities with a tilde 
are found from the corresponding quantities without the til- 
de at w = A/fi .  Finally, taking the Fourier transform of (4) ,  
we find 

f,, f, , and n are the equilibrium occupation numbers of the 1 1 
spins in the excited and ground states and of phonons; A is ~ ~ ( 1 ,  ~ ) = - - - - [ - t h ' ( ~ ) ~ ( ~ ,  PA Q) 
the strain-energy constant for the spin-lattice interaction; M Q,+iQ T, ,  

is the mass of the two-level center; and No is the number of m 

unit cells in the lattice. The times T, , and T,,  describe the F(q, Q) 
+ I do p ( o )  N.rR. (@) . 

Raman scattering of phonons by spins accompanied by exci- o (7)  
tation and deexcitation, respectively. Instead of kinetic equations (2)  we thus now have a new 

Solving the last of Eqs. ( 2 ) ,  we find system of equations for the Fourier transforms of the angle- 
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averaged distribution functions (5) and (6), of the nonre- 
sonant and resonant nonequilibrium phonons, and ( 7 )  of 
spins. This system of equations is not closed, since a term 
containing distribution functions of phonons with an energy 
differing by + A from the energy of the phonons of the 
group under consideration has appeared on the right side of 
(5) .  Let us analyze the role played by these terms. We intro- 
duce 

where 

From (5)  we easily find the equation 

X(q,R) =X"(q,R) + Y(q,R)af (qjn) +X,,< (q,n) .  
(8) 

Using (6)  and ( 7 ) ,  we find from (8)  

X 
@ (4, Q) 

1- ( i / i , )E(q,  L?) - ( T / T , ~ T ~ ~ )  ( E  (q, Q) /  (Qs+iQ)) 

Using the explicit expressions for A and B, we find the fol- 
lowing expressions for X, , , (q,R) : - 

The symbols > and < mean that the arguments of the corre- 
sponding function are fiw - A and & + A, respectively. If 
fiw < A, all quantities with the < should be set equal to zero. 
In deriving ( 10) we used Eqs. ( 3 )  and some relations which 
follow from them when the variable w is replaced by 
w +_ A/fi. Using (7)-(9), we find 

where 

Now using expressions (5)  for F(q,R), and carrying out 
several simple manipulations, we find 

where 

We can also carry out further iterations. Using (5),  we clear- 
ly see the structure of the solution. An effective relaxation 
time ~ / ; ~ , = ~ / ( T ; ) + ( A , / T ~ , ) + ( A > / T ~ ~ ) + ( ~ < /  
T ,  , ) + (1, /T ,  ) + ... is singled out in the integrand on 
the left side of (12). An effective relaxation time 
1 / ~ ,  = 1 / ~ ;  ( 1 + 1 / A  + ... ) is also singled out on the right 
side. Clearly, allowance for all these contributions is a cor- 
rect way to deal with the incoming terms in the collision 
integral in the case of Raman scattering of phonons by spins. 
The times 7, and 7, introduced in this manner are generally 
functions of q and a. This point is not surprising, since the 
occupation numbers for the nonequilibrium phonons de- 
pend on z and t. Since the relaxation times of the phonons 
depend strongly on their energy, the times 7, and 7, may 
nevertheless depend weakly on q and R. The reason is the 
significant difference between the length scales of the Ra- 
man interactions for phonons with energies fiw and fiw f A. 
For phonons with an energy fiw - A, for example, the pa- 
rameter (q2DrR ) < may be large in comparison with unity, 
while for phonons with an energy + A it may be small in 
comparison with unity. Whatever the case, the iterative pro- 
cedure converges well, as can be seen from ( 12). The incom- 
ing terms give rise to a small change in one of the poles in the 
function Sf,, (q,R) [and also in the functions F(q,n)  and 
@(q,R) 1. This pole describes the behavior of the heat pulse 
after a long time (more on this below). Accordingly, we will 
simplify the calculations by completely discarding the con- 
tribution of the incoming terms. System of equations ( 5 ) -  
(7 )  then becomes closed. 

Discarding the corresponding terms from ( 12), we find 
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T 
61- ( q ,  Q) = { R , ~ + ~ Q  ( 1  + 4) + q2D -- - 

7,,1 

We can now calculate the energy characteristics of the heat 
pulse. The nonequilibrium increment in the energy of the 
system of spins is evidently related to Sf,, (z,t) by 
E, (z,t) = N *Sf, (z,t)A. The nonequilibrium increment in 
the energy of the resonant phonons is evidently given by 
E,f (z,t) = h p ( ~ ) ~ ~ F ( z , t ) ,  where SA is the broadening of 
the distribution energy of two-level systems. It is convenient 
to write the total energy of the system of nonequilibrium 
nonresonant phonons and spins: 

We can discard the first term here, since it describes the 
injection of resonant phonons into the crystal from thez = 0 
plane at t = 0. 

We thus have 

Under the condition grSd,  most of the energy is in the 
spin subsystem, while under the condition Ffi 9 rsd the oppo- 
site is true. We denote by Ef (z,t) the energy of the nonreson- 
ant phonons: 

Using (13), we find an expression for the total energy 
E(z,t) = Ef (z,t) + Erf+, (z,t): 

The first integral describes the usual diffusion of non- 
equilibrium phonons with a diffusion coefficient D ( w )  for 
each group of nonequilibrium phonons. The only difference 
from ordinary diffusion is that the number of phonons is not 
conserved; it decreases, because of the excitation of the two- 
level systems. We denote this term by E, (z,t). Carrying out 
the integration, we find 

The second term in ( 14) evidently describes a more complex 
process, in which an energy exchange among nonresonant 
phonons, resonant phonons, and spins is important. We de- 
note this term by E,(z,t). In it, we discard the term 
p(w)iiSA, since SA/A is small. In addition, it is easy to show 
that 

since the heat capacity of the spin system is higher than that 
of the phonons. Also assuming gr,,, we discard terms 
which are small in comparison with the remaining terms by a 
factor on this order. We find 

A ( q .  Q )  
- t -.I dop(o)_ - ( ; ) '  N ' t ,  e x p l b ( n . ) + ~ )  I ] ]  

0 

It is difficult to pursue the analysis of general expression 
(16) further. The reason is that ( 16) contains an average 
over the phonon distribution, and the quantities A ( q , f l )  and 
( 1/r i  )R-(q,n) (and also the sign of 1/rX ), which are to be 
averaged, depend strongly on the phonon energy. The 
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expression for A (q,fl) contains the quantities D(w) rR (0) 

and rR (w). For Rayleigh scattering of phonons by impuri- 
ties we would have D(w ) a w - 4 .  For Raman scattering of 
phonons under the condition w>A we again have 
rR (0) a w - 4 .  Consequently, the conclusions reached be- 
low will be only qualitative. 

Let us assume that the result we find when we take the 
average over the phonon distribution in ( 16) is determined 
by some predominant group of phonons with energies on the 
order of w, . Since the function A (q,fl) depends very strong- 
ly on the phonon energy, w, will generally be a function of 
the average phonon energy and the thickness of the sample. 
We assume a, - k, T, and we ignore the L dependence of 
w, . In place of 

we then write 
m 

where D and rR now correspond to the predominant group 
of phonons. The function in the integrand in 

is a sign-varying function. Its sign corresponds to either a 
pumping of the spin system in the course of Raman scatter- 
ing of phonons or a drawing of energy in a collision of a 
phonon with a two-level system in the excited state. In the 
integration of the function p (@)A (q,fl)a over dw, high-fre- 
quency phonons are predominant, since the relation 
lA (q,R) I a 1/11 + q2DrR + iflrR I 4 1 holds for the low-fre- 
quency phonons. For this reason, we have replaced the lower 
integration limit by w, , under the assumption 

This assumption corresponds to a pumping of the spin sub- 
system by the nonequilibrium phonons. In place of 

we write 

where we have introduced the new quantity by means of 

In place of ( 16) we find a far simpler expression for E2(z,t) : 

exp {iQt-iqz} 
, * ( ~ Q + Q ~ ~ + ~ ' D T  f./~..) ( 1 + q 2 D r ~ + i Q ~ ~ )  (17) 

Integrating over dfl in ( 17), we finally find 

where ifl, and ifl, ( f l ,  > 0 and fl, > 0) are the poles of the 
integrand in ( 17). These poles are given by 

It is obvious from ( 19) that the relation R2 < Rl  holds. Set- 
ting a, rR < 1 and rR < 1 and expanding the square root 
in ( 19 ) in a power series, we find 

sz, = .:' + q 2 ~ ,  
ZR 

It follows immediately that the maximum of the signal 
E2(z,t) is determined by the contribution from the pole 
f l  = ifl, and occurs long after arrival time t,. The integra- 
tion over dq in ( 18) can be carried out easily by numerical 
methods, with the help of (19) or (20). 

Let us examine the contribution El (z,t) in more detail. 
If rR (W) > L '/D(W), we can discard the second term in the 
argument of the exponential function in ( 15) for time inter- 
vals t which are not greatly longer than t,. The reason is that 
Raman-pumping processes are unimportant for these time 
intervals. In this case expression ( 15) corresponds to ordi- 
nary diffusion. The time at which the maximum of the devi- 
ation of the phonons from equilibrium arrives is t,, and the 
dependence of this time on the temperature and the thick- 
ness of the sample is t, o: T4L ,. In the case 
rR (W) < L '/D(W), Raman pumping processes play an im- 
portant role, and the arrival time of the maximum of the 
phonon deviation from equilibrium is on the order of 
[ t , rR (Z) ] ' I 2 ,  proportional to L and independent of the tem- 
perature. 

We now consider E2(z,t). We first note that the abso- 
lute value of E2 (z,t) near the maximum is on the same order 
of magnitude as El (z,t) as can be seen by comparing ( 15) 
and ( 17). Consequently, the heat pulse does indeed transfer 
a substantial fraction of its energy to the spin subsystem as it 
propagates through the crystal. Figure 1 shows the reqults of 
a numerical integration of (18). Specifically, this figure 
shows a family of curves of the arrival time of the second 
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t,, arb. units 

FIG. 1 .  Calculated temperature dependence of the arrival time of the 
second maximum of the signal. 1-B = 8; 2-8 = 4; 3-B = 1; 4- 
B = 0.4; 5-B = 0.25; b B  = 0. I; 7-B = 0.05. 

maximum of the signal, t,, versus the crystal temperature. 
The various curves in this family correspond to different 
values of the characteristic parameter B = (IR / L  )' at some 
temperature To. These curves have regions with positive and 
negative derivatives. 

The second maximum of the signal stems from the ef- 
fective pumping of the two-level systems by the heat pulse. 
Putting aside the contribution from long-wavelength phon- 
ons, which are incapable of transferring energy to the two- 
level systems, we can draw the following picture of the ener- 
gy transport through the crystal. 

Because of the strong elastic scattering, the phonons are 
delayed times on the order of 7, in the crystal. On the aver- 
age, there is a high probability that each phonon will transfer 
an energy on the order of its own energy to the two-level 
systems over a time interval 7,. Over a time T,, , the excita- 
tion energy of a center is converted into the energy of reso- 
nant phonons. If the concentration of two-level systems is 
high, however, these phonons experience a capture effect 
and cannot bring about a rapid spatial transport of energy. 
The effective spatial transport of energy therefore results 
from the slower process of Raman relaxation of the centers. 
This relaxation occurs over times on the order of T,, ; as a 
result, nonresonant phonons with a far larger diffusion coef- 
ficient are formed. 

After an event in which a center has relaxed, the emitted 
phonon reaches the bolometer after a time t<t, if, in the 
course of its motion, it does not excite another two-level sys- 
tem. The scale of this signal delay (the arrival time of the 
second maximum of the signal) in the crystal is determined 

by the time TsR under these conditions. The delay time and 
the temperature dependence of the position of the second 
maximum of the signal also depend on the probability for a 
repeated Raman pumping of the two-level systems by phon- 
ons emitted by the excited centers in the course of Raman 
relaxation. The result can be described at a qualitative level 
as follows. We assume that at the average experimental tem- 
perature To we have B(To) -- 1. At T <  To, the condition 
B ( T )  > B(To) holds. After relaxation, the phonons reach 
the bolometer without obstacle. The characteristic delay of 
the signal is determined by the value of r,, . It decreases with 
increasing T (see curves 1 and 2 and also the low-tempera- 
ture part of curve 3 in Fig. 1 ). At T >  To, on the other hand, 
events of a repeated pumping of the centers by phonons emit- 
ted in the course of the relaxation become important, be- 
cause of the rapid increase in both the probability for Raman 
pumping and the relaxation rate of the centers. In this case 
there is a "capture" of nonresonant phonons. The signal de- 
lay is far longer in this case than in the case T <  To. In a 
narrow transition region, the arrival time of the second max- 
imum of the signal increases sharply with increasing tem- 
perature. With a further increase in the temperature, the 
effective diffusion coefficient for excitations in the spin sys- 
tem is determined in order of magnitude by 1 (the mean 
square of the distance traveled by the phonons emitted in the 
course of the relaxation of the centers before they undergo 
another Raman-pumping event), divided by the excitation 
transfer time. The latter differs from T,, since the rate of 
change of the nonequilibrium increment in the spin distribu- 
tion function depends on the deviation of the phonons from 
equilibrium. The appearance of a region with a negative de- 
rivative at2/aT is associated with this circumstance. 

At a qualitative level, these results give a satisfactory 
explanation of the data of the corresponding experiments.12 
Specifically, the case of high concentrations of erbium ions" 
in the proposed systematics corresponds to the condition of 
an intense Raman pumping of the spin subsystem by the 
phonons (the parameter B is small at a certain average ex- 
perimental temperature). The decreasing part of the upper 
curves in Fig. 1 apparently gives a good description of the 
experimental results of Ref. 12. As the temperature is 
lowered in samples of the same composition, and/or when 
the sample thickness is changed, however, the intensity of 
the Raman pumping changes. This change should ultimately 
lead to a change in the sign of the derivative of the tempera- 
ture dependence of the arrival time of the second signal max- 
imum. The temperature dependence itself becomes very 
strong in this case. The case of low concentrations of erbium 
ionsi2 evidently corresponds to large values of the parameter 
B > 1 at the average experimental temperature. As in the 
experiments, the temperature dependence of t ,  is very 
strong, and we have (at2/dT) > 0. In order to observe a be- 
havior like that shown in Fig. 1, it would be important to use 
samples of identical thickness. The reason why this circum- 
stance is important is that the characteristic frequency of the 
predominant group of phonons depends on the thickness of 
the crystal. If experiments are instead carried out with crys- 
tals of identical composition (with a fixed concentration of 
two-level systems), and the parameter B is varied by carry- 
ing out the measurements in crystals differing in thickness, 
the series of t2(T,B) curves should of course be qualitatively 
the same as the series in Fig. 1. However, the behavior of the 
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parameter B as a function of the crystal thickness is not a 
simple question. 

I am indebted to I. B. Levinson and V. A. Itsarkin for 
many discussions. 
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