ZK9T®, 2001, rom 119, Bein. 6, crp. 1077-1086

© 2001

TAGGED-PHOTON EVENTS IN POLARIZED DIS PROCESSES

G. I. Gakh, M. I. Konchatnij, N. P. Merenkov"

NSC «Kharkov Institute of Physics and Technology»
61108, Kharkov, Ukraine

Submitted 31 October 2000

Deep inelastic scattering events of the longitudinally polarized electron by the polarized proton with a tagged
collinear photon radiated from the initial-state electron are considered. The corresponding cross-section is de-
rived in the Born approximation. The model-independent radiative corrections to the Born cross-section are
also calculated. The obtained result is applied to the elastic scattering.
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1. INTRODUCTION

The idea to use radiative events (events with the
emission of an additional tagged photon) in lepton—
hadron interaction to expand the experimental possibil-
ities for studying different topics in high-energy physics
has become quite attractive recently.

Photon radiation from the initial eTe~—state, in the
events with missing energy, has been successfully used
at LEP for measuring the number of light neutrinos
and for searching for new physics signals (for a recent
publication, see, e.g., [1]). The possibility to under-
take the bottonium spectroscopy studies at B-factories
by using the hard photon emission from the electron
or the positron was considered in Ref. [2].
portant physical problem of the total hadronic cross-
section scanning in the electron—positron annihilation
process at low and intermediate energies by means of
the initial-state radiative events was extensively dis-
cussed in Ref. [3].

The initial-state collinear radiation is very impor-
tant in certain regions of the deep inelastic scattering
(DIS) at the HERA kinematic domain. It leads to a re-
duction of the projectile electron energy, and therefore,
to a shift of the effective Bjorken variables in the hard
scattering process compared to those determined from
the actual measurement of the scattered electron alone.
That is why the radiative events in the DIS process
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must be carefully taken into account [4].

In addition, the measurement of the energy of the
photon emitted very close to the incident electron beam
direction [5, 6] allows studying the overlap of the kine-
matical photoproduction region (Q? = —(k; —k2)? ~ 0)
and the DIS region with small transferred momenta (Q?
about several GeV?) within the high-energy HERA ex-
periments. These radiative events can also be used for
independently determining the proton structure func-
tions Fy and F3 in a single run without lowering the
beam energy [5, 7]. The high-precision calculation
of the corresponding cross-section (taking the radia-
tive corrections (RC) into account) was performed in
Ref. [8].

In this paper, we investigate the events for deep-
inelastic radiative process (1) with a longitudinally po-
larized electron beam and a polarized proton as a tar-
get. As in Ref. [8], we suggest that the hard photon
is emitted very close to_the direction of the incoming
electron beam (A, = pi1k; < 6y with y < 1) and
the photon detector (PD) measures the energy of all
photons inside the narrow cone with the opening angle
26y around the electron beam. The scattered electron
3-momentum is fixed simultaneously.

We consider the longitudinal (along the electron
beam direction) and perpendicular (in the plane
(ky,ks)) polarizations of the proton. In Sec. 2, we
derive the corresponding cross-sections in the Born ap-
proximation and in Sec. 3, we calculate the different RC
contributions to the Born cross-section. The total ra-
diative correction for different (exclusive and calorime-
ter) experimental conditions for the scattered electron
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measurement is given in Sec. 4. Our results can be
applied to the cross-section of process (1). We con-
sider the target proton at rest and also the colliding
electron—proton beams. In Sec. 5, we apply the results
obtained in Sec. 4 to describe the quasi-elastic scatter-
ing using the relation between the spin-dependent pro-
ton structure functions and the proton electromagnetic
form factors in this limiting case.

2. BORN APPROXIMATION

The spin-independent part of the DIS cross-section
for the experimental setup considered here was recently
investigated in detail [8]. We now consider the spin-
dependent part of the corresponding cross-section that
is described by the proton structure functions ¢g; and
g2. Because the opening angle of the forward PD is very
small and we consider only the cross-section where the
tagged photon is integrated over the solid angle cov-
ered by the PD, we can apply the quasi-real electron
method [9] and parameterize these radiative events us-
ing the standard Bjorken variables

_ Q’ _ 2pi(kr — ko)
T=o——7~» Y=— <
2p1 (k1 — ko) Vv (2)
V= 2p1k17

and the energy fraction of the electron after the initial-
state radiation of a collinear photon
E—w

_2p1(k1—]{2)_
T Vv e 3)

where ¢ is the initial-electron energy and w is the en-
ergy deposited in the PD.

An alternative set of kinematic variables that is spe-
cially adapted to the collinear photon radiation is given
by the shifted Bjorken variables [5, 10]

Q> = —(ky — ks — k)%, &=

2p1(k1 — ks — k)
2p1 (kl — k)

The shifted and the standard Bjorken variables are re-
lated by

<>

TYZ . z+y—1
y=——"

~ N
Q" =2Q°, T=—"7-—,
’ z+y—1 z

(5)

At fixed values of x and y, the lower limit of z can be
derived from the constraint on the shifted variable z,

I—y
1—ay

r<1l = z>

In the Born approximation, we determine the DIS
cross-section in radiative process (1) in terms of the
contraction of the leptonic and hadronic tensors as®)

do 4ra*(Q?) p
ﬁdaﬁ”dy - @4 ZLul/H[Jl/‘/ (6)

where a(Q?) is the running electromagnetic coupling
constant that takes the vacuum polarization effects into
account and the Born leptonic current tensor is given
by [11]

a , d*k
LEI} = m/nguuApQA (klpRt + kZpRs)Ta
Q (7)
q=Fki —ky -k,

where 2 covers the solid angle of the PD.

For the initial-state collinear radiation considered
in this paper, the quantities R; and Rg can be written
as

1 2m?
Ri=——— — —
Y G I P A
z 2m?(1 — z2) (8)
Rs = - ;
(1—2)t * t?
t:—Qkkl., q:Zkl_k2.

In accordance with the quasi-real electron approxi-
mation [9], the trivial angular integration of the Born
leptonic tensor gives

292
Ly =1In 6—07 (9)
m

Q .
LE,/ = %P(z,Lg)dzzsw,,\pq)\klp, 5

14 22
P(ZaLO): 1—ZL0_

2(1 — z + 22)
1—z 7

where m is the electron mass.
We write the spin-dependent part of the hadronic
tensor in the right-hand side of Eq. (6) as

.o rEuvipdn
_ HYAp
H,, =—iM-—7—7"""=

Sq
g1+ 92)S, — g2—p1,|, (10
2p1q (1 2) p 2p1q 1p ( )

where M is the proton mass and S is the proton po-
larization 4-vector. In writing expressions (7) and (10),
we assume that the polarization degree of both the elec-
tron and the proton is equal to 1.

Our normalization is such that the proton struc-
ture functions ¢; and ¢, are dimensionless and in the
limiting case of the elastic scattering (z — 1) they are

1 In what follows, we are only interested in the spin-dependent

part of the cross-section.

1078



MKITD, Tom 119, BeIm. 6, 2001

Tagged-photon events in polarized DIS processes

expressed in terms of the proton electric (Gg) and mag-
netic (Gp) form factors as

g1(2,Q%) = 6(1—2) x

A
X |GuGp + ——(Gu — Gr)Gu |,

14+ ) (11)
@2
= 0r
(#.0%) = —8(1 - 3)——(Gur — Gi)G
g2\, $1+)\ M E)GM,

GuE = GM7E(@2)~

It is convenient to parameterize the proton polariza-
tion 4-vector in terms of the 4-momenta of the reaction
under study [12],

gl _ upty + Vkay — 2ur + V(1 — y)]k1y (12)
K \/—uVQ(l—y)—uQM2 '

where u = —Q?, 7 = M?/V, and we neglect the elec-
tron mass. The 4-vector of the longitudinal proton po-
larization has the respective components

| — (_Ip] mE
si=(-BLm) oy

for the target at rest and the colliding beams. Here,
E,(p1) is the proton energy (3-momentum) and n; is
the unit vector along the initial electron 3-momentum
direction. The 4-vector of the perpendicular proton
polarization Sf; is the same in both these cases,

5h = (07 w) R

1-— (n1 . 1’12)2

Sl =(0,ny),

where ng is the unit vector along the scattered elec-
tron 3-momentum direction. It is easy to verify that
Slis+ =o.

Using the definitions of the DIS cross-section in
Eq. (6), leptonic and hadronic tensors (9) and (10),
and the parameterization of the proton polarization in
Eq. (12), after simple calculations, we derive the spin-
dependent part of the cross-section of process (1) with a
tagged collinear photon radiated from the initial state,

daHB7 L«

— Ll — Zpz, L)% (9,0 1
ididids B LT (9,07, (15)

g, = (@) <%_ 2—@) )

~

¥, =- = —_— l—g—i'yA% X
1 s 5 ( )
x 13,0 [1+ e2R(3,Q%)], (17)
where
474 2
DT %grrg-2 Ty
N 5 )2 M2
Ro2@Q) LMy
gl(x7Q2) Vv

It is useful to recall that the unpolarized DIS cross-
section is proportional to o (1+eR), where R = o /or
and for the events with the tagged collinear photon [5],
we have

2(1-9)

CE= —FF>5-
1+ (1-9)°

Because the quantities e; and es strongly depend on
z, the determination of the proton structure functions
g1 and go is possible by measuring the z-dependence
of cross-section (15) in a single run without lowering
the electron beam energy. The quantity e; is propor-
tional to 7 and is therefore very small at the HERA
conditions. Thus, the separation of g; and g2 in the
DIS process with the longitudinally polarized proton
is possible in experiments with the target at rest and
low values of V' (up to 20 GeV?). At HERA, the cross-
section of this process can be used for measuring the
structure function g; only. This can be seen in Fig. 1.
On the other hand, Fig. 2 shows that the experiments
with the tagged photon and the perpendicular proton
polarization can be used to measure both ¢g; and g, in a
wide range of energies (provided that Q? is not large).

3. RADIATIVE CORRECTIONS

We restrict ourselves to the model-independent
QED radiative corrections related to the radiation of
the real and virtual photons by leptons. The remain-
ing sources of RC in the same order of the perturbation
theory, such as the virtual corrections with a double
photon exchange mechanism and the bremsstrahlung of
the proton and partons, are more involved and model-
dependent. They are not considered here. Our ap-
proach to the calculation of the RC is based on the
account of all the essential Feyman diagrams that de-
scribe the observed cross-section in the chosen approx-
imation. To avoid cumbersome expressions, we retain
the terms accompanied by at least one power of large
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Fig.1. The dependence of e; on the energy fraction of the tagged photon z;

1— z for different values of z, y, and V. The

upper set corresponds to V' = 10 GeV? and the lower one to V = 100 GeV?. The maximum value of z; is y(1—x)/(1—xy)
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Fig.2. The quantity e; at different values of 2 and y as a function of 21 =1 — 2

logarithms in RC. In the considered case, three differ-
ent types of such logarithms appear,

2 2
Lo, LQZID%, L‘g:ln%

(18)
In the chosen approximation, we in addition neglect
the terms of the order 6%, m?/2%63, and m?/Q? in the
cross-section.

The total RC to cross-section (15) includes the con-
tributions of the virtual and soft photon emission and
also the hard photon radiation.

As one can see, we use the standard gauge-invariant
expression for the hadronic tensor. The leptonic tensor
was calculated in accordance with the QED rules. The
complete set of Feynman diagrams for the calculation
of the radiative correction caused by the real photon
emission is taken into account. Taking the loop correc-
tion into account involves the gauge invariant method

for solving both the infrared and the ultraviolet diver-
gence problems. The results obtained in our paper are
therefore gauge invariant. We begin with calculating
the virtual and soft corrections.

3.1. Virtual and soft corrections

To calculate the virtual- and soft-photon emission
corrections, we start from the expression for the one-
loop corrected Compton tensor with a heavy photon
for the longitudinally polarized electron [13]. For the
hard collinear initial-state radiation considered here,
this Compton tensor can be written as

2
v _ @ .p o
L,ul/ - EpL,uv + EX
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) >k
X ZEuuquAklpT X

Q
T 4m?(1- 2
y {_+MLQW 7 (19)
—t t2
1+ 22
T = T {2lnz[l;—In(1-2)—Lg] —2F(2)} +
+1+22—z2
2(1—2z)
1/z
d
F(z):/—xln\l—x|,
1
—t
lt:hl 50
) 72 9
=4(Lg-1)In— — L} +3Lg + 31 —-=
p=4Lo -1l ~L}+3Lg+3z+ o — o,

where 0 is the fictitious photon mass and the tensor
LB, is defined in Eq. (9).

To eliminate the photon mass, we must add the con-
tribution of the additional soft photon emission with
the energy less than As; A <« 1. This contribution was
found in Ref. [14] and the corresponding procedure of
the photon mass elimination was described in Ref. [15].
The result is

Ly = Ly, (p = 7). (20)

v

A2
ﬁ:2(LQ—1)ln?+3LQ+31nz—ln2Y—

2 9 . 5 0
—?—§+2L12 <cos 5),

&2
Y =—,
€

where ¢, is the scattered electron energy and 6 is the
electron scattering angle (6 = kik»).

The angular integration with respect to the hard
tagged photon over the solid angle of the PD gives
(within the chosen accuracy)

a2 .
£L/V+S= (5) [pP(z,Lg)—|—G]dzzsw>\pq>\k1p, (21)

G = { 11+ - [Inz(Lo — 2Lq) — 2F(2)] +

-z

_|_

142222 4(1 — 2
+ 2z z }L0+wLanz

2(1—2) 1-=2

Using the right-hand side of Eq. (21) instead of Lfy
in the right side of Eq. (6), we derive the contribution

of the virtual and soft corrections to Born cross-section
(15) as
V4S
doy i _
ydy di dz

_ (%)2 [6P(2, Lo) + G1 S (3,9,Q%), (22)

where ¥ | (2,7, @2) are defined in Eqgs. (16) and (17).

3.2. Double hard bremsstrahlung

We now consider the emission of an additional hard
photon with the 4-momentum % and the energy higher
than Ae. To calculate the contribution from the real
hard bremsstrahlung, which in our case corresponds
to the double hard photon emission with at least one
photon seen in the forward PD, we specify three kine-
matical domains:

i) both hard photons hit the forward PD, i.e., both
are emiﬁgd within a narrow cone around the electron
beam (kki,kk; < 6p);

i7) one hard photon is tagged by the PD and the
OﬂlEI‘ is collinear to the outgoing electron momentum
(1~<k2 S 9(,]7 06 < 1);

i17) an additional photon is emitted at large angles
(i.e., outside both narrow cones defined above) with
respect to both incoming and outgoing electron mo-
menta.

The contributions of regions i) and i) contain
quadratic terms in the large logarithms Lo and L,
whereas region 7i7) contains terms of the order LgLy,
which can give an even larger numerical contribution if
2600 > 590/m.

We refer to the third kinematical region as the semi-
collinear one. Beyond the leading logarithmic accu-
racy, the calculation can be performed using the results
in [16] for the leptonic current tensor with the longitu-
dinally polarized electron for the collinear as well as
semi-collinear regions.

The contribution of kinematical region i), where
both hard photons hit the PD and each has the en-
ergy higher than Ae, can be written as

dol) 2
e G
X {{%Pg@(z) + 11_';22 <1nz - g - 21nA>} Lo+
+7(1—z)—2(1—z)1nz+2:())1+7j;1n2 -
_23_122:2322 1n1;2}z,,L(ga,g,@2). (23)
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The double-logarithm terms in the right side of Eq. (23)
are the same for the polarized and unpolarized cases,
whereas the one-logarithm terms are different. In
Eq. (23), we use the notation Pg(Z)(z) for the ©
part of the second-order electron structure function
D(z, L) [17],

D(z,L)=6(1—2) + %P(l)(z)L +

+%(%)2P(2)(2)L2+...,

PO(z) = P (2)0(1—2=A)+6(1—2)P", A =0,

1422

7 =7

3
R 5+2hA,

1+ 22
1—2z

P§2)(2)=2[ <21n(1—z)—lnz—|—%>+

+ %(l—kz)lnz—l—}—z]. (24)

To calculate the contribution of kinematical region
ii), we can use the quasi-real electron method to de-
scribe the radiation of both collinear photons. This
contribution to the observed cross-section depends on
the event selection, in other words, on the method of
measuring the scattered electron.

For the exclusive event selection, where only the
scattered electron is detected, but the photon emit-
ted almost collinearly (i.e., within the opening angle
26}, around the scattered electron momentum) goes
unnoticed or is not taken into account in calculating
the kinematical variables, we have, in accordance with
Ref. [9],

do_iz')7excl 9
IlL @
——— = —P(z,L
gdydidz 4w (2, Lo)
Yimaz
dy, {1+(1+y1)2 =
X L-1)+
1+ " ( ) +y
AJY

X ZH,L(l‘svysan)a (25)

where y; is the energy fraction of the photon radiated
along the 3-momentum k, relative to the scattered elec-
tron energy (y1 = @/e3) and

_ 20’2
Iomaf 4 omy,
. xyz(1+y1)
T (1-y)(+y)’
z—(1—-y)(1+
yo= 2T EIAHI) e e gy,

The upper integration limit in Eq. (25) can be found
from the condition of the inelastic process occurrence

= (M + p)?, where p is the pion mass. Taking into
account that ¢ = zky — (1 +y1)k» for kinematics ii), we
obtain

2z6[M — &3(1 — ¢)] — 2Mey — pu®> — 2Mp
2e9[M + ze(1 — ¢)]

Yimaz =

for the proton target at rest and

_2z2-Y(1+¢)
Yimaz = Y(l + C)

for the HERA collider, where ¢ = cosf. In writing this
limit for HERA, we neglect the electron energy and the
proton mass compared to the proton beam energy. We
note that for the exclusive event selection, the param-
eter A is purely auxiliary and does not enter the final
result when the contribution of region 7ii) is added.

From the experimental point of view, a more re-
alistic measurement method is the calorimeter event
selection, where the photon and the electron cannot be
distinguished inside a narrow cone with the opening
angle 26; along the outgoing electron momentum di-
rection. Therefore, only the sum of the photon and the
electron energies can be measured if the photon belongs
to this cone. In this case, we obtain

do_ii),cal 9
[ a
—r—— = —P(z,L
idgdids ~ amel (5 Lo) X
[ dy [1+ (1+wp) + ]
X L—-1)+ X
/ (1+y1)3 yi ( )+
A)Y
X EH L i :ﬁ
a? 1
_FP(Z L(] |: <21n———> §:| X

x 5.1 (2,9,Q%). (26)

For the calorimeter event selection, the parameter 6y is
physical and the final result depends on it (see below).

To calculate the contribution of region iii), we can
use the quasi-real electron method [9] and write the lep-
tonic tensor in this region (that describes the collinear
photon radiation with the energy fraction 1— z and the
noncollinear photon radiation with the 4-momentum
k) as

Luu(kl-, k27 (1 - Z)klaif;.) =

o dz 7
= 5P Lo)— Luw(2hr ko, ), (27)
- d*Fk i
Lyw(ehr ko B) = 5 o ).
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u+t s+u
( ) klp §£ k?p )

L;Y“/ (Zk‘l., k2., ]:3) = 2i6pVApdA

(j = Zkl — k‘g — ]‘;'., u = —22k2k1,

§= 2];5]62, t = —22]~€k1.

In the general case of the noncollinear photon radi-
ation with the 4-momentum k, the contraction of the
leptonic tensor L7, (ki, k2, k) and the hadronic one is
given by

1
=-—— X

LY, (ky ko, k) H, —

!

x {(27Ai+@*B) g1 +27[A;—2' (u+t) Blga } j— (28)

1 2
Lttty = -5 4,25

2
—Ay <1—y+$>} g1+ {As-l-ac’(s-l-u)B +

+ <1 —y+ 211;—T> [#'(u +t)B —At]} 92} X
xz¢g(_wﬁgﬂ 29)

A = (u+1)° + (ug® — st)(u + s),

u;;t) N

+(u+s) <2V(1 —y)—

B:(u+t)<

u+s
l‘ b
Ag = (u+3s)*+(ug®> —st)(u+t), q==k —ky —k,

2

=gt 927 g12(@',q%).

The contraction of the shifted leptonic tensor
L}, (2ky, ko, k) entering the definition of the leptonic
tensor in region i7i) and the hadronic tensor can be
obtained from Egs. (28) and (29) by the substitution

(ki k) — (k1. k),
-2 (30)

(S'/ t7u’ q7 x,) %

We use the approach developed in Ref. [8] to ext-
ract the leading contributions (those proportional to
Infy and Inéj) to the respective cross-section and to

separate the infrared singularities. We write the cross-
section as

dall‘”j_ B a_2 y
gdidydz  4m?

Timax

x ¢ P(z, L) A/

2(1—¢)
03
Yiman

-/

A)Y

dri[22 + (2 — 21)?
x12(z — 1)

ZH,J_(xhyta Q%) +

dy1[1+ (1 + y1)?
yi(1+y1)

2(1—¢)
0

X In —=—+

1422
YL (7s, 95, Q) | + 1, LoZy, o, (31)

where

ry(z — 1)
-z +y—1

Q? = QQ(Z —x1).

For the proton target at rest, we have

Ty =

z—x1+y—1
Yt = ————

zZ— I

2ze[M — e3(1 — ¢)] — 2Mesy — p? — 2uM
2e[M — e5(1 = ¢)]

Timaz =

and for the HERA collider conditions,

Y(1+c¢)
—

Timaz = 2 —

The dependence on the infrared auxiliary param-
eter A and on the angles 6y and 6] is contained in
the first two terms on the right-hand side of Eq. (31),
whereas the quantities Z) | do not contain the infrared
and collinear singularities. They can be written as

g 1—c/OO du / dty "
= 1+ ) /) 6t —a
0
i Ving ool
x x
X /—1‘1’\|,¢(t17t2(t1»u))_/—1‘1)|\7¢(a-,0) +
= ) o ]
adt Yim
1
M [ Mg (a0
ta / HJ_ a,0) —

0

dx
/—1¢” 1 0 a y (32)
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where we use the same notation as in Ref. [8], namely

1—c
2 b

1-— C1,2
ta1 = 5 a=

(a—t1)2(1 4+ u?)

faltr ) = Ty +ule

, Cla2 = C0891,2-,

010 = 1~<k1,2,

i =t1(1 = 2a) 4+ a+2\/a(l —a)t; (1 —t).

The quantity ® 1 (t1,t2) is given by

()7

éﬁ

Q1 (t1,t2) = G|, 1s (33)

G| = g1(27 A + @B) + 2927 [A; — #(a + ) B|

912 = g12(2,G°).

For the proton target at rest and the HERA col-
lider, the respective upper integration limits in the
right-hand side of Eq. (32) are

I 2Mze —2Mesg — 2zee5(1 —¢) — p?2 —2Mpu
me 2e[M + ze(1 — ¢1) — ea(1 — ¢2)]

22— V(1+c)
Ty = —————.
m 1+Cl

4. THE TOTAL RADIATIVE CORRECTION

The total RC to Born cross-section (15) is given by
the sum of the virtual and soft corrections and the hard-
photon emission contribution. The last one is different
for the exclusive and calorimeter event selection. In the
considered approximation, it is convenient to write this

RC as

do‘RC

2
L _ «
gdidjdz  4r? (ZijL +Bpy1) (34)

The first term ¥; is independent of the experimental se-
lection rules for the scattered electron and is given by

1422
X

1
Eij,r = Lo {ELOPo(Q)(Z) + T

2
X [51nz—2F(z)—|—1n2Y—21nzlnY— %—l—

+ 2Lis <1+C>} n
2
3+22 5 2(3_22+322)
+ o - e (-9 +
3—20z+422 A 2(1—c)
m} E|\7l(x7y7Q2)+P(Z,L0) IHTX

Uo

du
y / - up(l)(l — U)ZH,J_(xtayta Q?) +
0

1+ 22 Timaz
LoZy, up=—"%%, (35)

+1—z z

where the quantity P(1)(x) is defined by relations (24)
and the quantities x4, y;, and Q7 depend on u = z1/z.

On the other hand, the second term in the right-
hand side of Eq. (34), denoted by X, explicitly de-
pends on the event selection rule. It includes the main
effect of the scattered-electron radiation. For the ex-
clusive event selection, where only the scattered bare
electron is measured and any photon that is collinear
to its momentum direction is ignored, this contribution
is

S5 = P(z, Lo) X

Yimaz

1 Y1
X d L+1Y—1P(1)< >+ }x
/ n [(Q ! ) 1+y; 1+uy
0

X ZH,L(xs-,ysaQ§)~ (36)

In this case, as mentioned above, the parameter 6;
that separates kinematical regions ii) and 4ii) is not
physical, and we see that the final result does not con-
tain it. But the mass singularity that is related to the
scattered electron radiation exhibits itself through Lq
in the right-hand side of Eq. (36).

The situation is quite different for the calorimeter
event selection, where the detector cannot distinguish
between the events involving a bare electron and events
where the scattered electron is accompanied by a hard
photon emitted within a narrow cone with the open-
ing angle 26} around the scattered electron momentum
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direction. For this experimental setup, we derive

S5 | = P(z,Lo) x

Yimaz

2(1—-r¢)

1
S~ d p(1)< ) «
6,2 / n 14y
0

x |ln

1 A
X ZH,J_(xs-,ysan)_'_ EZH,J_(%%QQ) . (37)

For the calorimeter setup, the parameter 6 de-
fines the event selection rule and is therefore physi-
cally meaningful. The final result depends on it. How-
ever, the mass singularity due to the photon emission
by the final electron is cancelled in accordance with
the Kinoshita-Lee-Nauenberg theorem [18]. The ab-
sence of the mass singularity clearly indicates that the
term containing In 6 in the right-hand side of Eq. (37)
arises due to the contribution of kinematical region 7i),
where the scattered electron and the photon radiated
from the final state are well separated. That is why no
question arises as to determining the quantity 5 that
enters the expression for yimaz.

Comparing our analytical results for the RC due to
the real and virtual photon emission with similar calcu-
lations for the unpolarized case [8], we see that within
the leading-log accuracy (double-logarithm terms in
our case), these RC are the same for the spin-dependent
and spin-independent parts of the cross-section of ra-
diative DIS process (1). The difference appears at the
level of the next-to-leading-log accuracy (single loga-
rithmic terms in our case). That is true for the pho-
tonic corrections in an arbitrary order of the perturba-
tion theory.

We note that the correction to the usually measured
asymmetry, which is the ratio of the spin-dependent
part of the cross-section to the spin-independent one,
is not large because the main factorized contribution
due to the virtual and soft photon emission trends to
cancellation in this case. If the experimental informa-
tion about the spin observables is extracted directly
from the spin-dependent part of the cross-section (see
Ref. [19] for the corresponding experimental method),
this cancellation does not occur and the factorized cor-
rection gives the basic contribution.

5. THE CASE OF QUASI-ELASTIC
SCATTERING

In the previous sections, we considered the tagged-
photon events in the DIS process. These events can be
used to measure the spin-dependent proton structure

functions ¢g; and go in a single run without lowering
the electron beam energy. In the quasi-elastic case,
where the target proton is scattered elastically,

e (k1) +p(p1) — e (k2) + (k) + p(p2), (38)

the tagged-photon events can also be used to measure
the proton electromagnetic form factors Gg and Gjy.
Our final results obtained in Sec. 4 can then be applied
using relation (11) between the spin-dependent proton
structure functions ¢; and g» and the proton electro-
magnetic form factors in this limit. In this case, we can
therefore use all the formulas in Sec. 4 with ¥, | and
G|, . entering the definition of Z) | replaced by Zﬁfl

and Gﬁl,p respectively,
dra®(Q?)
Zel ) 2 —
I (xay,Q ) y(4M2+Q2) X
1 Y 2
X {47’ <T+1—§> GuGE— (1—5) (1+2T)GM:| X

x6(1—z), (39)

2 2 2
S Q7) = et [ 1w

x {(1 - %) G2, — (1+ 2T)GMGE] 5(1—x), (40)

el — @2 %
A g 4 L
x (D LG3; + By LGuGr)6(1 — &), (41)

Dy =B +27(u+1)],

By =27 KH 41\42> Zt—B(2V+ﬂ+t~)} ,
QQ

_ G2 ~ 2ut
D, = —KB [%+§+a+(ﬂ+t) <1—g+ﬂ>y
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and the form factors in the right-hand side of Eq. (41)
depend on §>.

The description of the form factors is a very im-
portant test for any theoretical model of strong inter-
actions [20]. The proton magnetic form factor Gy is
known with a high accuracy in a wide range of the mo-
mentum transfer, while the data about the electric form
factor Gg are very poor. The recent experiment in the
Jefferson Lab on the measurement of the ratio of the re-
coil proton polarizations performed by the Hall A Col-
laboration [21] improves the situation in the region up
to Q% ~ 3.5 GeV?2, but the higher momentum transfer
region remains unexplored. The use of radiative events
(38), with both the polarized and unpolarized proton
target, on accelerators with a high-intensity electron
beam (for example, CEBAF) can open new possibili-
ties in the measurement of Gg as compared to both
the Rosenbluth method [22] and the method based on
measuring the recoil proton polarization ratio [23].
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