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We consider Andreev�Majorana (AM) b ound states with zero energy on surfaces, interfaces, and vortices in

di�erent phases of the p -wave sup er�uids. We discuss the chiral sup er�uid

3

He - A and time reversal invariant

phases: sup er�uid

3

He - B , planar and p olar phases. The AM zero mo des are determined by top ology in the

bulk and disapp ear at the quantum phase transition from the top ological to nontop ological state of the sup er-

�uid. The top ology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl p oints

in chiral sup er�uids (the Berry phase monop oles in momentum space) give rise to the one-dimensional Fermi

arc of AM b ound states on the surface and to the one-dimensional �at band of AM mo des in the vortex core.

The one-dimensional no dal line in the p olar phase pro duces a two-dimensional �at band of AM mo des on the

surface. The interplay of dimensions also connects the AM states in sup er�uids with di�erent dimensions. For

example, the top ological prop erties of the sp ectrum of b ound states in three-dimensional

3

He - B are connected

to the prop erties of the sp ectrum in the two-dimensional planar phase (thin �lm).
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1. INTRODUCTION

Ma jorana fermions are ubiquitous in sup ercon-

ductors and fermionic sup er�uids. The Bogoliub ov�

de Gennes equation for fermionic Bogoliub ov�Nambu

quasiparticles can b e brought to a real form by a uni-

tary transformation. This implies a linear relation

b etween the particle and antiparticle �eld op erators,

which is the hallmark of a Ma jorana fermion. The

fermionic statistics and Co op er pair correlations give

rise to Ma jorana fermions, irresp ective of geometry, di-

mensionality, symmetry, and top ology [1�3]. The role

of top ology is to protect gapless Ma jorana fermions,

which play a ma jor role at low temp eratures, when the

gapp ed degrees of freedom are frozen out. For some

combinations of geometry, dimensionality, and symme-

try, these Ma jorana fermions b ehave as emergent mass-

less relativistic particles. This suggests that Ma jorana

*
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fermions may serve as building blo cks for constructing

the Weyl particles of the Standard Mo del [4].

Here, we consider gapless Ma jorana fermions, which

app ear as Andreev b ound states on the surfaces of

sup er�uids and on top ological ob jects in sup er�uids:

quantized vortices, solitons, and domain walls. In all

cases, the b ound states are formed due to the subse-

quent Andreev re�ections of particles and holes. The

key factor for the formation of Andreev b ound states on

a small defect with the size of the order of the coherence

length is a nontrivial phase di�erence of the order pa-

rameter at the opp osite ends of the particle tra jectory.

In general, it dep ends on the structure of the order pa-

rameter in real and momentum space, which can b e

rather complicated. The p ossibilities for the formation

of Andreev b ound states are rather diverse, several of

them are shown in Fig. 1. Particularly interesting is

the case where Andreev b ound states are top ologically

stable, which means that they have stable zero-energy

Ma jorana mo des that cannot b e eliminated by a small

p erturbation of the system parameters.
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Fig. 1. Schematic picture of the formation of Andreev b ound states lo calized ( a ) on domain wall, ( b ) on the edge, and ( c )

inside the vortex core. In all cases, the mechanism is the subsequent particle�hole conversions via Andreev re�ections at the

opp osite ends of the trajectory s . The re�ected particle (hole) picks up the phase of the order parameter '

R

( � '

L

) and

�ips the group velo city direction v

p

( v

h

) as shown in panel a . In general, the wave vectors of the particle and the hole in

the bulk are slightly di�erent, k

p;h

= k

F

� E =v

F

, where k

F

and v

F

are Fermi momentum and velo city, and E is the energy.

If the order parameter phase di�erence is �

R

� �

L

= � , a closed lo op can b e formed even for k

e

= k

h

, that is, for the zero

energy E = 0 . In cases ( b , c ), the phase di�erence o ccurs due to the momentum dep endence of the gap function and the

phase winding around the vortex core corresp ondingly

General prop erties of the fermionic sp ectrum in

condensed-matter and particle physics are determined

by top ology of the ground state (vacuum). The classi-

�cation schemes based on top ology [5�11] suggest the

classes of top ological insulators, fully gapp ed top olog-

ical sup er�uids/sup erconductors, and gapless top olog-

ical media. In Refs. [9�11], the classi�cation is based

on top ological prop erties of the matrix Green's func-

tion, while other schemes explore the prop erties of a

single-particle Hamiltonian and are therefore applica-

ble only to systems of free (noninteracting) fermions.

Among the fully gapp ed top ological sup er�uids, there

is time-reversal invariant sup er�uid

3

He- B , thin �lms

of chiral sup er�uid

3

He- A , and thin �lms of the time-

reversal invariant planar phase of sup er�uid

3

He. The

main signature of top ologically nontrivial vacua with

the energy gap in the bulk is the existence of zero-

energy edge states on the b oundary, at the interface

b etween top ologically distinct domains [12, 13] and

in the vortex cores [14]. For sup er�uids and sup er-

conductors, these are Andreev�Ma jorana (AM) b ound

states. These are mainly propagating fermionic quasi-

particles, which have a relativistic sp ectrum at low en-

ergy [15�20]. However, for sp ecial geometries and di-

mensions, the AM b ound state represents an isolated

nonpropagating midgap state, called the Ma jorana zero

mo de (or Ma jorino [21]). It is not a fermion, b ecause

it ob eys a non-Ab elian exchange statistics [22]. This in
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particular o ccurs for the AM b ound states in the vortex

core of chiral p -wave sup er�uid-sup erconductor in 2+1

dimensions [23].

A gapless AM b ound state also o ccurs on the sur-

faces, interfaces, and in the vortex cores of gapless top o-

logical media. Among them, there are chiral sup er�uid

3

He- A with Weyl p oints, the time-reversal invariant

planar phase with Dirac p oints, and the time-reversal

invariant p olar phase with a line of zero es. The sp ec-

trum of AM b ound states is nonrelativistic and exotic:

the zero es of the AM b ound-state sp ectrum form Fermi

arcs [24�27] and �at bands [28�35].

2. ANDREEV�MAJORANA EDGE STATES IN

2+1 GAPPED TOPOLOGICAL

SUPERFLUIDS

The p -wave sup er�uid

3

He was discovered in 1972.

But until now, there is little understanding of sup er-

�uid

3

He �lms. The information on recent exp eriments

in con�ned geometry can b e found in review [36]. In

thin �lms, a comp etition is exp ected b etween the chiral

sup er�uid

3

He- A and the time-reversal invariant pla-

nar phase, b oth acquiring a gap in the sp ectrum in the

quasi-two-dimensional case due to transverse quantiza-

tion.

The fermionic sp ectra in b oth the 2D A phase and

the planar phase have nontrivial top ological prop erties.

These top ological states provide examples of systems

featuring generic top ological phenomena. In particu-

lar, an analog of the integer quantum Hall e�ect exists

in the 2D A phase, where the internal orbital momen-

tum of Co op er pairs plays the role of the time reversal

symmetry breaking magnetic �eld. In the time rever-

sal invariant planar phase, the quantum spin Hall e�ect

can b e realized. In a close analogy with 2 d electronic

systems, a top ological invariant is determined by the

numb er of fermionic edge mo des with zero energy. In

the sup er�uid systems, the edge zero mo des are the An-

dreev b ound states lo calized at the sup er�uid/vacuum

b oundary or at the interfaces and domain walls sepa-

rating sup er�uid states with di�erent top ological prop-

erties. Below, we discuss the top ological prop erties and

Andreev b ound states for the 2D A phase and the pla-

nar phase in detail.

2.1. Chiral

3

He- A �lm

The order parameter in a spatially homogeneous

time reversal symmetry breaking

3

He- A phase is given

by

^

� = �

x

( p

x

� ip

y

) ;

where �

x

is the spin Pauli matrix and the p

x;y

are mo-

mentum pro jections onto the anisotropy plane. Such

an order parameter describ es spin triplet Co op er pairs

with zero spin S

z

= 0 and a nonzero oribital momen-

tum pro jections L

z

= � 1 onto the anisotropy axis. A

nonzero L

z

plays the role of the internal magnetic �eld

breaking the time-reversal symmetry of the systems.

Con�ned in the xy plane, the 2D state of the A phase

is a fully gapp ed system. By the analogy with the 2D

electronic gas in a quantized magnetic �eld, the gapp ed

ground states (vacua) in 2+1 or quasi 2+1 thin �lms

of

3

He- A are characterized by the top ological invari-

ant [37�41]

N =

e

ij k

24 �

2

�

� Tr

�

Z

d

3

p G@

p

i

G

� 1

G@

p

j

G

� 1

G@

p

k

G

� 1

�

: (1)

Here, G = G ( p

x

; p

y

; ! = ip

0

) is the Green's function

matrix, which dep ends on the Matsubara frequency

p

0

; the integration is over the whole (2+1)-dimensional

momentum�frequency space p

i

= ( p

x

; p

y

; p

0

) , or over

the Brillouin zone and p

0

in crystals. Expression (1)

is an extension of the TKNN invariant invented by

Thouless, Kohomoto, Nightingale, and den Nijs to

describ e top ological quantization of the Hall conduc-

tance [42, 43].

The advantage of the top ological approach is that

we can cho ose to work with the simplest form of the

Green's function, which has the same top ological prop-

erties and can b e obtained from the complicated one

by a continuous deformation. For a single layer of a

3

He- A �lm, we can cho ose

G

� 1

= ip

0

+ �

3

�

p

2

2 m

� �

�

+ c�

z

( �

1

p

x

+ �

2

p

y

) ; (2)

where p

2

= p

2

x

+ p

2

y

. The Pauli matrices �

1 ; 2 ; 3

and �

x;y ;z

resp ectively corresp ond to the Bogoliub ov�Nambu spin

and the ordinary spin of a

3

He atom; the parameter

c characterizes the amplitude of the sup erconducting

order parameter. The weak-coupling BCS limit corre-

sp onds to mc

2

� � . In this limit, c = � =p

F

, where

� is the gap in the sp ectrum and p

F

is the Fermi mo-

mentum, p

2

F

= 2 m = � .

It is also instructive to consider the simpli�ed case

where there is only a single spin comp onent, which cor-

resp onds to the fully spin-p olarized p

x

+ ip

y

sup er�uid:

G

� 1

= ip

0

+ �

3

�

p

2

2 m

� �

�

+ c ( �

1

p

x

+ �

2

p

y

) : (3)

We call this case the spinless fermions. Top ological in-

variant (1) for the state in Eq. (3) with � > 0 is N = 1 ,
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Fig. 2. Schematic picture of the interface b etween two

�lms of a chiral p

x

+ ip

y

sup er�uid with values N

1

and N

2

of top ological invariant (1). The interface con-

tains chiral AMBSs with the sp ectrum E = E ( p

y

) ,

which move with the group velo city v

g

= dE ( p

y

) =dp

y

.

In general, the algebraic sum of branches (the num-

b er of left-moving minus the numb er of right-moving

fermions) is N

2

� N

1

. On the lower panel, the chi-

ral branch of spinless AMBSs is given by Eq. (3) with

N

2

= 1 and N

1

= 0 . For the spinful case in Eq. (2),

there are two anomalous branches of the sp ectrum of

edge states E ( p

y

) , which are degenerate with resp ect

to spin. The chiral branches pro duce an equilibrium

mass current �owing along the interface

while for the state with � < 0 , we have N = 0 . Accord-

ing to the bulk�surface corresp ondence, there must b e

a branch of the AM edge states at the interface b etween

these two phases, which crosses zero energy level [ 15 ; 44 ]

(Fig. 2).

In the spin case in Eq. (2), b oth spin comp onents

contribute to the top ological invariant equally, and we

have N = 2 for � > 0 and N = 0 for � < 0 . There-

fore, there must b e two branches of AM edge states,

which cross zero energy level. In the general case,

the algebraic sum of anomalous branches (the num-

b er of left-moving minus the numb er of right-moving

fermions) satis�es the index theorem, n

L

� n

R

=

= N ( x > 0) � N ( x < 0) .

2.2. Time-reversal invariant planar phase

In addition to the 2D chiral A phase in thin �lms

of sup er�uid

3

He, the time-reversal invariant planar

phase [45] can b ecome stable. While this phase has not

yet b een identi�ed exp erimentally, a strong suppres-
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x
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Fig. 3. An illustration of the intrinsic spin�current

quantum Hall e�ect due to AM edge states in the strip e

of a planar phase �lm with the top ological invariant

N

K

= 2 in Eq. (6). As distinct from

3

He - A in Fig. 2,

the anomalous branches with di�erent spin projections

have opp osite slop es. This gives rise to the quantized

spin Hall e�ect without a magnetic �eld, instead of the

quantized Hall e�ect in

3

He - A �lm [41 , 50 ]

sion of the transverse gap in

3

He- B has b een observed

in recent exp eriments [ 36 ; 46 �49].

The order parameter that describ es the spatially

homogeneous time reversal invariant planar phase has

the form

^

� = p

y

+ i�

z

p

x

. In this phase, the order

parameter is anisotropic and vanishes for the p k e

z

di-

rection, transverse to the �lm. Nevertheless, con�ned

in 2D when p

z

= 0 , this system is gapful.

Being time-reversal invariant, the planar phase has

a zero top ological invariant of the typ e given by Eq. (1).

But it has an extra discrete symmetry, namely, a com-

bination of a � spin rotation around the z axis followed

by a � = 2 phase rotation. This mo di�es the top ological

classi�cation, adding an extra Z top ological invariant

obtained by Volovik and Yakovenko in Ref. [41]. This

invariant gives rise to the intrinsic spin Hall e�ect il-

lustrated in Fig. 3.

An extra motivation to study this particular case

of the planar phase is that it can b e considered a cor-

nerstone of the dimensional reduction scheme that can

b e applied to general class-DI I I top ological sup ercon-

ductors. In the next section, we show that the top o-

logical prop erties of a 3D system and an emb edded

(2+1)D system, which exists in any time-reversal in-

variant cross section of the momentum space, are con-

nected. As an application of such a reduction, we derive

a generalized index theorem for 3D top ological sup er-
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conductors, which provides an example of the bulk�

b oundary corresp ondence in o dd spatial dimensions.

In the single-layer case, the simplest expression for

the planar phase Green's function G ( p

0

; p

x

; p

y

) is

G

� 1

= ip

0

+ �

3

�

p

2

2 m

� �

�

+ c�

1

( �

x

p

x

+ �

y

p

y

) : (4)

This phase is symmetric under time reversal. The

two spin comp onents have opp osite chiralities, as can

b e seen from the identity

�

x

p

x

+ �

y

p

y

=

1

2

( �

x

+ i�

y

)( p

x

� ip

y

) +

+

1

2

( �

x

� i�

y

)( p

x

+ ip

y

) : (5)

That is why the contributions of the two spin com-

p onents to top ological invariant (1) cancel each other,

N = 0 . But the planar phase is still top ologically non-

trivial b ecause of the discrete Z

2

symmetry b etween the

two spin comp onents in Eq. (5). Due to this symmetry,

the matrix K = �

3

�

z

commutes with the Green's func-

tion, which allows intro ducing the symmetry-protected

top ological invariant [41, 50]

N

K

=

e

ij k

24 �

2

�

� Tr

�

K

Z

d

3

p G@

p

i

G

� 1

G@

p

j

G

� 1

G@

p

k

G

� 1

�

: (6)

This invariant is robust to deformations, if the defor-

mations are K -symmetric. For state (4) with � > 0 ,

we have N

K

= 2 . For the general case of a quasi 2D

�lm with multiple layers of the planar phase, the invari-

ant N

K

b elongs to the group Z . The magnetic solid-

state analog of the planar phase is the 2D time reversal

invariant top ological insulator, which exp eriences the

quantum spin Hall e�ect without an external magnetic

�eld [12].

Figure 3 demonstrates AM edge states on two

b oundaries of the strip e of a single layer of a planar

phase �lm. As distinct from

3

He- A in Fig. 2, the

anomalous branches with di�erent spin pro jections are

not degenerate: they have opp osite slop es, which cor-

resp onds to the zero value of the invariant N = 0 in

Eq. (1). In the case of a sup erconductor with planar

phase symmetry, the invariant N

K

determines quanti-

zation of the spin Hall e�ect. In an applied voltage V ,

the sp ectra on two b oundaries shift in opp osite direc-

tions, changing the p opulation of branches. This pro-

duces an imbalance in the spin currents carried by edge

states on two b oundaries, giving rise to a nonzero total

spin current J

z

x

(the current of the z -pro jection of spin

along the x axis). This underlies the quantized spin

Hall e�ect in the absence of a magnetic �eld [ 41 ; 50 ; 51 ]:

J

z

x

= �

spin

xy

E

y

; �

spin

xy

=

N

K

4 �

: (7)

In this time reversal invariant system, the electric cur-

rent quantum Hall e�ect is absent. The top ological

charge N in Eq. (1), which determines quantization

of the Hall conductance in the absence of a magnetic

�eld [40], is N = 0 , and the currents of di�erent spin

p opulations cancel each other.

The mass and spin currents carried by an AM edge

state in p -wave sup er�uids have b een considered in

Refs. [52, 53].

3. AM BOUND STATES ON THE SURFACE OF

A 3+1 GAPPED TOPOLOGICAL

SUPERFLUID

Fully gapp ed 3 + 1 fermionic systems � top ological

insulators and top ological sup erconductors � are now

under extensive investigation. The interest in such sys-

tems was revived after the identi�cation of top ological

insulators in several comp ounds [12].

These systems are characterized by gapless

fermionic states on the b oundary of the bulk insulator

or at the interface b etween di�erent states of the

insulator. Historically, the top ological insulators with

fermionic zero mo des at the interface were intro duced

in [54]. An example of fully gapp ed top ological sup er-

�uids is the B phase of sup er�uid

3

He. Much attention

has b een devoted to the investigation of b ound fermion

states on the surface of

3

He- B . The presence of

AM surface states in

3

He- B can b e prob ed through

anomalous transverse sound attenuation [55�58] and

surface sp eci�c heat measurements [59, 60]. These

AM b ound states are supp orted by the nonzero

value of the top ological invariant in

3

He- B [20] and

have a two-dimensional relativistic massless Dirac

sp ectrum [16� 19 ; 24 ].

3.1.

3

He- B edge states from bulk top ology

A top ological sup er�uid/sup erconductor of the

3

He- B typ e is describ ed by the top ological invariant

N

K

, which is protected by symmetry:

N

K

=

e

ij k

24 �

2

�

� Tr

�

K

Z

d

3

p H

� 1

@

p

i

H H

� 1

@

p

j

H H

� 1

@

p

k

H

�

: (8)
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Here, H ( p ) is the Hamiltonian, or in the case of an in-

teracting system, the inverse Green's function at zero

frequency H ( p ) = G

� 1

( ! = 0 ; p ) , and K is a matrix

that commutes or anticommutes with H ( p ) .

The prop er mo del Hamiltonian that has the same

top ological prop erties as sup er�uids/sup erconductors

of the

3

He- B class is the following:

H =

�

p

2

2 m

� �

�

�

3

� c�

1

� � p ; (9)

where �

i

and �

i

are again the resp ective Pauli matrices

of the Bogolyub ov�Nambu spin and the nuclear spin.

The symmetry K , which enters the top ological invari-

ant N

K

in Eq. (8), is represented by the �

2

matrix,

which anticommutes with the Hamiltonian: it is the

combination of time reversal and particle�hole symme-

tries of

3

He- B . In the limit 1 =m = 0 , Eq. (9) trans-

forms to the Dirac Hamiltonian, where the parameter c

serves as the sp eed of light, while

3

He- B lives in the op-

p osite limit mc

2

� � . The top ological phase diagram

in the plane ( �; 1 =m ) is shown in Fig. 4.

The mechanism of the Andreev�Ma jorana b ound

state formation at the edge of

3

He- B is clear from

Hamiltonian (9). We consider the b oundary plane at

x = 0 as shown schematically in Fig. 5. Then under

normal re�ection of particles and holes from the b ound-

ary, some comp onents of the gap function in Hamilto-

nian (9) change sign. Therefore, we obtain a nonzero

phase of the gap along the e�ective tra jectory, as shown

in Fig. 1. In particular, for the tra jectories normal to

the b oundary p

z ;y

= 0 , the overall gap function changes

sign, leading to the formation of a zero-energy state lo-

calized at the b oundary.

However, this is not the whole story. Indeed, if we

formally assume that the Hamiltonian may have either

negative e�ective mass m < 0 or a negative chemical

p otential � < 0 , the exact solution of the sp ectral prob-

lem yields no zero-energy states, as is discussed b elow.

The hint to the top ological origin of the AM b ound

states in

3

He- B can b e obtained from the top ological

phase diagram in Fig. 4, which demonstrates that the

system undergo es a top ological quantum phase tran-

sitions (QPTs) as we change the sign of the chemical

p otential � or the e�ective mass m .

The domain wall that separates the states with dif-

ferent values of N

K

should contain the zero-energy

states � the AM zero mo des.

NK = +2

NK = 0NK = � 2

NK = 0

Dirac Dirac

NK = +1NK = � 1
0

1/m

�

Fig. 4. Phase diagram of top ological states of a triplet

sup er�uid of the

3

He - B typ e in Eq. (9) in the plane

( �; 1 =m ) . States on the line 1 =m = 0 corresp ond to

the Dirac vacua, whose Hamiltonian is noncompact.

The top ological charge of Dirac fermions is intermedi-

ate b etween charges of compact

3

He - B states. The

line � = 0 marks a top ological QPT, which o ccurs b e-

tween the weakly coupled

3

He - B (with � > 0 , m > 0 ,

and the top ological charge N

K

= 2 ) and the strong

coupled

3

He - B (with � < 0 , m > 0 , and N

K

= 0 ).

This transition is top ologically equivalent to the QPT

b etween Dirac vacua with opp osite mass parameters

M = �j � j . The gap in the sp ectrum vanishes at this

transition. The line 1 =m = 0 separates the states with

di�erent asymptotic b ehavior of the Hamiltonian at in-

�nity: H ( p ) ! � �

3

p

2

= 2 m . The transition across this

line o ccurs without closing the gap

3.2.

3

He- B edge states from top ology of the

planar phase

To prove the existence of the AM b ound states on

the surface of

3

He- B or at the interface, we can use a

dimensional reduction. We assume that the b oundary

plane is at x = 0 , and hence the conserved longitudinal

momentum pro jections are p

z ;y

. To �nd the complete

sp ectrum of b ound states E

b

= E

b

( p

y

; p

z

) , it is enough

to consider a set of 2D sp ectral problems for the cross

sections of the momentum space,

p

y

cos � + p

z

sin � = 0 ; (10)

where 2 � > � � 0 .

An example of such a dimensional reduction to the

plane p

z

= 0 is shown in Fig. 5. The 2 + 1 Hamiltonian

in this cross section reduced from the 3 + 1 phase exactly

coincides with the Hamiltonian of the planar phase.

Therefore, it is classi�ed by the integer-valued top o-

logical invariant N

K

in Eq. (6), which can b e shown
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NK = 0

py

pz

E

E

py

pz

NK = 2Z topological
superfluid
3He-B

Z topological
planar phase at pz = 0

z
y

x

hole

particle

Non-
topological
insulator

Fig. 5. Dimensional reduction of the surface-state sp ec-

tral problem in 3D to that in the time-reversal invariant

cross section of momentum space p

z

= 0 . Reduction

from the Z top ological sup er�uid

3

He - B results in the

Z top ological planar phase at p

z

= 0

to coincide with the top ological invariant N

K

of the

parent 3D

3

He- B phase in Eq. (8). The top ologically

protected AM states in

3

He- B are thus related to the

top ologically protected edge states in the 2 + 1 planar

phase (see details in Ref. [61]).

3.3. Evolution of the edge state at a

nontop ological quantum phase transition

We consider the sp ectrum of AM fermions using the

simplest mo del of the interface b etween the sup er�uid

and the vacuum, in which Hamiltonian (9) changes

abruptly at the b oundary, with the b oundary condi-

tion  ( z = 0) = 0 .

At low energies j E j � � , their sp ectrum is a he-

lical sp ectrum, b eing describ ed by the Hamiltonian

H

AM

= c ( �

y

p

x

� �

x

p

y

) [16]. Interestingly an exact

solution of the sp ectral problem demonstrates [62] that

the linear sp ectrum of AM b ound states exist up to the

merging p oint with the continuous sp ectrum of delo cal-

ized states.

For m > 0 , the exact sp ectrum of AM fermions

E = � p

?

is shown by the solid line in Fig. 6 for

E > 0 . The b ound states are con�ned to the region

j p

?

j <

p

2 m� . They disapp ear when their sp ectrum

merges with the continuous sp ectrum in bulk. The edge

�

�

�

0 p� 2� m

a
�

�����

0 p� 2� m

b

Fig. 6. Sp ectrum of AM fermions, lo calized states on

the surface of a top ological sup er�uid/sup erconductor

of the

3

He - B class (solid lines) for ( a ) � > m > 0 and

( b ) m > � . The sp ectrum of b ound states terminates

when it merges with the continuous sp ectrum in the

bulk (gray region), whose b order is shown by a dashed

line. The AM b ound states exist for p

2

?

< 2 m�

of the continuous sp ectrum is shown by the dashed line

in Fig. 6. If mc

2

> � , the minimum of the bulk energy

sp ectrum increases monotonically with the momentum

p

?

, and therefore the bulk gap is

� = �; mc

2

> �: (11)

If � > mc

2

, the minimum of the bulk energy is a

nonmonotonic function of p

?

, having a minimum at

p

min

?

=

p

2 m ( � � mc

2

) , where the bulk gap is

� =

p

mc

2

(2 � � mc

2

) ; 0 < mc

2

< �: (12)

The line mc

2

= � marks the nontop ological QPT �

a momentum-space analog of the Higgs transition [10],

when the Mexican hat p otential as a function of p

?

emerges for � > mc

2

.

3.4. Evolution of the edge state at a

top ological quantum phase transition

We �rst consider the b ehavior of the sp ectrum

of Ma jorana fermions at the top ological transition at

which m crosses zero. As m approaches zero, m ! 0 ,

the region of momenta where b ound states exist shrinks

and �nally, for m < 0 , i. e., in the top ologically triv-

ial sup er�uid, no b ound states exist any more. Simul-

taneously the gap in the bulk, which at small m is

� �

p

2 mc

2

� according to Eq. (12), decreases with de-

creasing m and vanishes at m = 0 . This corresp onds to

the conventional scenario of a top ological QPT, when

at the phase b oundary b etween the two gapp ed states

with di�erent top ological numb ers, the gap is closed.
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The same happ ens at the top ological QPT o ccurring

when � crosses zero (see the phase diagram in Fig. 4).

We now consider what happ ens with b ound states in

the case where the top ological QPT o ccurs in the opp o-

site limit, when m changes sign via in�nity, i. e., when

1 =m crosses zero. This top ological transition o ccurs

without closing the gap. In this case, the b ound states

formally exist for all p

x

even in the limit 1 =m ! 0 .

But in this limit, the ultraviolet divergence o ccurs: the

characteristic length scale of the wave function of the

b ound state L / ~ =mc ! 0 . Hence, if the top ologi-

cal QPT from a top ologically nontrivial to the trivial

insulator (or sup erconductor) o ccurs without closing

the gap, the gapless sp ectrum of surface states disap-

p ears by escaping via the ultraviolet. This limit corre-

sp onds to the formation of a zero of the Green's func-

tion, G = 1 = ( i! � H ) ! 0 . Such a scenario is imp ossi-

ble in the mo dels with a b ounded Hamiltonian [63, 64],

as in the approximation of a �nite numb er of crystal

bands.

On the other hand, the Green's function zero es can

o ccur due to particle interactions. As was found in

Ref. [65], classi�cations of interacting and noninteract-

ing fermionic systems do not necessarily coincide. This

is related to zero es of the Green's function, which ac-

cording to Ref. [10] contribute to top ology alongside

with the p oles. Due to zero es, the integer top ologi-

cal charge of an interacting system can change without

closing the energy gap, and it is suggested that this may

lead to the o ccurrence of top ological insulators with no

fermion zero mo des on the interface [63, 64].

That is why we exp ect that the same scenario with

an escap e to the ultraviolet o ccurs for interacting sys-

tems: if due to zeros in the Green's function, the top o-

logical QPT in the bulk o ccurs without closing the gap,

the sp ectrum of edge states do es nevertheless change at

the top ological QPT, and this change o ccurs via the ul-

traviolet.

We �nally mention that the magnetic �eld violates

time reversal symmetry, which generically leads to a

�nite gap (mass) in the sp ectrum of AM fermions on

the surface. At a particular orientation of the magnetic

�eld, there is still the Z

2

dsicrete symmetry, which sup-

p orts gapless AM b ound states [66, 67]. This symme-

try is sp ontaneously broken at some critical value of

the magnetic feild, ab ove which the AM fermions b e-

come massive. The surface of

3

He- B with massive AM

b ound states represents a 2 + 1 top ological �insulator�:

it is describ ed by the top ological invariant in Eq. (1).

The line on the surface that separates the surface do-

mains with di�erent values of this top ological invariant

contains 1 + 1 gapless AM fermions [68].

4. ANDREEV�MAJORANA BOUND STATES

ON THE SURFACE OF A 3+1 WEYL

SUPERFLUID. FERMI ARC

We now move to the AM b ound states that ap-

p ear as edge and vortex states in gapless top ological

systems. Here, the zero es in the bulk lead to extended

zero es on the surfaces, interfaces, and vortex cores. We

start with p oint zero es � Weyl p oints � in chiral su-

p er�uids, which pro duce the lines of zero es (Fermi arcs)

on the surface, and the �at band in the vortex core.

4.1. Andreev�Ma jorana Fermi arc on the

b oundary of a Weyl sup er�uid

The top ological origin of AM b ound states in 3 + 1

chiral sup er�uids can b e viewed by extending the top ol-

ogy of the 2 + 1 chiral system in Sec. 2 to the 3 + 1 case.

For simplicity, we consider spinless fermions, or, which

is the same, the fermions with a given spin p olariza-

tion. Then the Green's function in Eq. (2) extended to

the 3 + 1 case is

G

� 1

( p ; p

0

) = ip

0

+ �

3

�

p

2

2 m

� �

�

+

+ c ( �

1

p

x

+ �

2

p

y

) ; (13)

where p = ( p

x

; p

y

; p

z

) . We regard p

z

as a parameter of

the 2 + 1 system. Then for each p

z

, except p

z

= � p

F

,

this Green's function describ es the fully gapp ed 2 + 1

system � an �insulator� characterized by the top olog-

ical invariant in Eq. (1):

N ( p

z

) =

1

4 �

2

Tr

�

Z

dp

x

dp

y

dp

0

�

� G@

p

x

G

� 1

G@

p

y

G

� 1

G@

p

0

G

� 1

�

: (14)

This insulator is top ological for j p

z

j < p

F

, where

N ( j p

z

j < p

F

) = 1 , and is top ologically trivial for j p

z

j >

> p

F

, where N ( j p

z

j > p

F

) = 0 .

At p

z

= � p

F

, invariant (14) is not determined, since

the corresp onding 2 + 1 system is gapless. The bulk

3 + 1 sup er�uid

3

He- A has two p oints in the sp ectrum

p

�

= (0 ; 0 ; � p

F

) where the energy is zero, see Fig. 7.

These no des in the sp ectrum are top ologically pro-

tected, b ecause they represent monop oles in the Berry

phase in the momentum space and are characterized

by the top ological invariant in Eq. (1), where the in-

tegration is now over the 3D sphere around the Weyl

p oint in the 3 + 1 space ( p

0

; p

x

; p

y

; p

z

) [9]. In the vicin-

ity of these p oints, the fermionic quasiparticles b ehave

as chiral (left-handed and right-handed) Weyl fermions
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2D trivial

py

px

pz

insulator

pF

2D topological
insulator

2D trivial
insulator

� pF

N(pz) = 0

N(pz) = 1

right Weyl
fermions

left Weyl
fermions

N(pz) = 0
x = 0

F
er

m
i a

rc

E
(p

y,
 p

z)
 =

 0
Fig. 7. Line of AM b ound states on the surface of a

chiral sup er�uid with Weyl p oints. This line represents

a 1D Fermi surface that separates the edge states with

p ositive and negative energies (see also Fig. 9). How-

ever, as distinct from conventional Fermi surfaces, this

Fermi surface has end p oints. The end p oints of the

Fermi arc are determined by projections of the bulk

Weyl p oints to the surface

in particle physics. That is why such no des are called

the Weyl p oints. Arrows in Fig. 7 show the direction

of the e�ective spin of the Weyl fermion. This spin is

parallel to p � p

+

in the vicinity of p

+

, which means

that the fermions living there are right-handed. For

the left-handed fermions near p

�

, their e�ective spin is

antiparallel to p � p

�

.

According to the bulk�surface corresp ondence, at

each p

z

for which N ( p

z

) = 1 , there should b e one

branch of AM edge states that crosses the zero energy

level (see Fig. 2). As a result, we have a line of ze-

ro-energy states in the range � p

F

< p

z

< p

F

. This line

represents the Fermi surface (Fermi line) in the two-di-

mensional momentum space of b ound states. As the

conventional Fermi surface, it separates the p ositive-

and negative-energy levels, but in contrast to the con-

ventional Fermi surface, this Fermi surface is not closed.

It has two end p oints, and this is why this line is called

the Fermi arc.

The end p oints of the Fermi arc coincide with the

pro jection of the Weyl p oints to the surface. This is

a consequence of the bulk�surface corresp ondence in

Weyl systems [25]. For an arbitrary direction of the

surface with an angle � b etween the normal to the sur-

face and the z axis, the Fermi arc is concentrated in the

range of momenta � p

F

sin � < p

z

< p

F

sin � . We note

that in

3

He- A , the b oundary conditions require � = 0 .

In crystals, the Weyl p oints can b e moved to the

b oundaries of the Brillouin zone, where they annihi-

late each other. As a result, we obtain a chiral 3 + 1

top ological insulator or a fully gapp ed chiral top olog-

ical sup erconductor. Since N ( p

z

) = 1 for all p

z

, the

top ological Fermi arc on the b oundaries transforms to

a closed top ological Fermi surface.

4.2. Andreev�Ma jorana Fermi arcs on solitons

and domain walls

Similar Fermi arcs app ear on the domain walls or

solitons separating the chiral phases with opp osite chi-

ralities. We have N ( j p

z

j < p

F

) = +1 on one side of the

soliton/wall and N ( j p

z

j < p

F

) = � 1 on the other side.

According to the index theorem [ 9 ; 44 ], the di�erence

b etween these two values determines the numb er of zero

mo des at the interface b etween the 2+1 top ological in-

sulators for each j p

z

j < p

F

. As a result, the domain

wall and the soliton contain two Fermi arcs instead of

a single Fermi arc on the b oundary (Fig. 8).

A Fermi arc on domain walls in

3

He- A [70] has b een

considered in Refs. [ 27 ; 71 ].

Figure 9 also includes b ound states with a nonzero

energy and demonstrates that the Fermi arc do es rep-

resent a piece of the Fermi surface that separates the

p ositive- and negative-energy levels.

5. TOPOLOGICAL SUPERFLUIDS WITH

LINES OF ZEROES. THE

ANDREEV�MAJORANA SURFACE FLAT

BAND

The zero-dimensional p oint no des in the bulk (Weyl

p oints) give rise to one-dimensional no des (lines) in the

sp ectrum of AM b ound states. In the same manner,

the 1D no dal lines in the bulk give rise to 2D mani-

folds of AM b ound states with zero energy (Fig. 10).

We consider the top ological origin of such disp ersion-

less sp ectrum � a �at band � with the example of the

p olar phase of a triplet sup er�uid/sup erconductor [32].

5.1. Flat band of Andreev�Ma jorana mo des on

the surface of the p olar phase

The Hamiltonian for the p olar phase is

H =

�

p

2

2 m

� �

�

�

3

� c�

1

�

z

p

z

: (15)
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Fig. 8. Top ology of Andreev b ound states on a

^

l soliton [69 ]. The momentum space top ology of Weyl p oints in bulk

3

He - A on two sides of the soliton prescrib es the existence of Fermi arcs in the sp ectrum of Andreev b ound states in the

soliton or at the interface b etween the bulk states with di�erent p ositions of Weyl p oints. In the considered case, the

Weyl p oints on two sides of the interface have the same p ositions in momentum space, but the opp osite chiralities. As a

result, the 2 + 1 top ological insulators have opp osite top ological invariants, N ( p

z

= 0) = � 1 . This leads to two Fermi

arcs terminating on the projections of the Weyl p oints on the soliton/interface plane in accordance with the index theorem

n (right) � n (left ) = 2

This sup erconductor ob eys the time reversal and space

inversion symmetry, and it has a line of zero es in the

form of a ring.

For simplicity, we consider spinless fermions, or,

which is the same, the fully spin-p olarized fermions,

whose Hamiltonain is

H =

�

p

2

2 m

� �

�

�

3

� c�

1

p

z

: (16)

The sp ectrum of such fermions has a no dal line �

the ring p

2

x

+ p

2

y

= p

2

F

, p

z

= 0 . The stability of this

no dal line is determined by the top ological invariant

protected by symmetry,

N

K

=

1

4 � i

Tr

2

4

K

I

C

dl H

� 1

r

l

H

3

5

: (17)

Here, the integral is along a lo op C around the no dal

line in the momentum space (Fig. 11), and the ma-

trix K = �

2

anticommutes with the Hamiltonian. The

winding numb er around the element of the no dal line

is N

K

= 1 .

We now consider the momentum p

?

as a parameter

of the 1 + 1 system; then for j p

?

j 6= p

F

, the system rep-

resents the fully gapp ed state, a 1 + 1 insulator. This

insulator can b e describ ed by the same invariant as in

Eq. (17) with the integration contour chosen parallel to

p

z

. Because the Hamiltonian tends to the same limit

as p

z

! �1 , the p oints p

z

= �1 are equivalent, and

the line �1 < p

z

< 1 forms a closed lo op. That is

why the integral

N

K

( p

?

) =

1

4 � i

Tr

�

K

Z

1

�1

dp

z

H

� 1

r

p

z

H

�

(18)

is integer valued.

The top ological invariant N ( p

?

) in (18) determines

the prop erties of the surface b ound states of the 1 + 1

system at each p

?

. Due to the bulk�edge corresp on-

dence, the top ological 1D insulator must have a surface

state with exactly the zero energy. Because such states

exist for any parameter within the circle j p

?

j = p

F

, we

obtain a �at band of AM mo des in Fig. 11 a � the con-

tinuum of self-conjugate b ound states with exactly the

zero energy, E ( j p

?

j < p

F

) = 0 , which are protected

by top ology. Such mo des do not exist for parameters

j p

?

j > p

F

, for which the 1 + 1 sup er�uid is nontop o-

logical.

In the spin p olar phase with Hamiltonian (15), the

no dal ring in the bulk gives rise to two surface �at

bands with opp osite chiralities for two directions of

spin. The tiny spin�orbit interaction leads to a small

splitting of the AM mo des.
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surface states
�  < 0boundary of

surface states
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�  = 0

extended
states

surface states
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Fig. 9. The sp ectrum of b ound states with two Fermi

arcs " ( p

y

; p

z

) = 0 . The arrows show directions of the

Fermi velo city at these Fermi arcs. At p

z

= 0 , the

velo city is in the same direction, v

y

> 0 , which demon-

strates that b oth Fermi arcs have the same top ological

charge N = +1 , which together satisfy the index theo-

rem n (right ) � n (left) = 2 , in agreement with the mo-

mentum space top ology of Weyl p oints in bulk

3

He - A

on two sides of the soliton in Fig. 8. This leads to a dis-

continuity in the sp ectrum of b ound states at p

y

= 0 ,

where the sp ectrum merges with the bulk sp ectrum

E(px, py = 0) bulk

pxpF� pF

branches

surface flat band

Fig. 10. Sp ectrum of AM mo des on the surface of the

p olar phase. These mo des form a 2D �at band: all

the states with p

2

x

+ p

2

y

< p

2

F

have zero energy. The

sp ectrum is shown for p

y

= 0

px

pz

py Cinside
CoutsideCoutside

Cinside

E Ea b

� /a

py

py�� / a

0

px

pz

py

px

px

pF

N = 1

N = 1

0 0

Fig. 11. Top ologically nontrivial no dal lines gener-

ate top ologically protected �at bands on the surface:

( a ) closed equatorial line of zeros in the p olar phase;

( b ) spiral of zeros in the multilayered graphene is also

a closed line. Projection of the line on the surface de-

termines b oundary of �at band. If for a �xed ( p

x

; p

y

)

the energy E ( p

x

; p

y

; p

z

) is nonzero for any p

z

, then

the Green's function G ( ! ; p

z

)

p

x

;p

y

describ es a 1D fully

gapp ed system, an �insulator�. At each ( p

x

; p

y

) inside

the projection of the line to the surface, this insulator is

top ological, since it is describ ed by nonzero top ological

invariant (18). Thus, for such ( p

x

; p

y

) , there is a gap-

less edge state on the surface. The manifold of these

zero-energy edge state inside the projection forms the

�at band

5.2. Flat band on the surface of mo del graphite

In the multilayered graphene, when the numb er of

graphene layers tends to in�nity, and if some small ma-

trix elements are neglected, the resultant 3 + 1 system

has a line of zero es, which also ob eys an invariant sim-

ilar to that in Eq. (17). This no dal line has the shap e

of a spiral [32, 33] (Fig. 11).

We again consider the momentum p

?

as a parame-

ter of the 1 + 1 system; then for j p

?

j 6= t , where t is the

dominating hopping element, the system represents the

fully gapp ed system, a 1 + 1 insulator. This insulator

can b e describ ed by the same invariant as in Eq. (17)

with the integration contour chosen parallel to p

z

, i. e.,

along the 1D Brillouin zone at a �xed p

?

. Due to p eri-

o dic b oundary conditions, the p oints p

z

= � � =a , where
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a is the distance b etween the layers, are equivalent and

the contours of integration form a closed lo op. As a

result, we obtain the integer-valued invariant

N

K

( p

?

) =

1

4 � i

Tr

Z

� =a

� � =a

dp

z

�

2

H

� 1

r

p

z

H : (19)

For j p

?

j < t , the 1 + 1 insulator is top ological b e-

cause N ( j p

?

j < t ) = 1 . This gives rise to a surface

�at band. Since there are no Co op er-pair correlations,

the fermionic b ound states within the �at band are not

Ma jorana mo des.

6. ANDREEV�MAJORANA MODES ON

VORTICES IN CHIRAL 2 + 1 SUPERFLUIDS

The low-energy fermions b ound to the vortex core

play the main role in the thermo dynamics and dynam-

ics of the vortex state in sup erconductors and Fermi

sup er�uids. The sp ectrum of low-energy b ound states

in the core of an axisymmetric vortex with the winding

numb er � = � 1 was obtained by Caroli, de Gennes,

and Matricon for the isotropic mo del of an s -wave su-

p erconductor in the weak-coupling limit � � � [72]:

E

n

( p

z

) = � � !

0

( p

z

)

�

n +

1

2

�

: (20)

This sp ectrum is two-fold degenerate due to spin de-

grees of freedom. The integer numb er n is a quan-

tum numb er related to the angular momentum of the

b ound-state fermions. The minigap � the level spac-

ing !

0

( p

z

) � corresp onds to the angular velo city of the

fermionic quasiparticle orbiting the vortex axis. The

direction of rotation is determined by the sign of the

winding numb er � of the vortex.

The level spacing is typically small compared to

the energy gap of the quasiparticles outside the core,

!

0

� �

2

=� � � . Hence, in many physical cases, the

discreteness of n can b e neglected. In such cases, the

sp ectrum crosses zero energy as a function of the con-

tinuous angular momentum L

z

, and we can consider

this as a sp ectrum of quasi zero mo des. The fermions

in this 1D �Fermi liquid� are chiral: the p ositive-energy

fermions have a de�nite sign of the angular momentum

L

z

. The numb er of the branches crossing zero energy

as a function of continuous L

z

ob eys the index theo-

rem [9].

Here, we are interested in the �ne structure of the

sp ectrum, when its discrete nature is imp ortant. This

takes place, for example, in ultracold fermionic gases

near the Feshbach resonance, when � is not small.

We �rst consider the 2 + 1 space�time and start with

the weak-coupling limit. The Ma jorana nature of the

Bogoliub ov particles requires that the sp ectrum must

b e symmetric with resp ect to zero energy, i. e., for each

level with an energy E , there must b e a level with the

energy � E . For fermions on vortices, such condition

is satis�ed for two classes of systems. In systems of

the �rst class, the sp ectrum of Andreev b ound states is

E

n

= !

0

( n + 1 = 2) . Vortices in s -wave sup erconductors

b elong to this class. Vortices of the second class have

E

n

= !

0

n . They contain an AM mo de exactly with the

zero energy level at n = 0 . In a 2 + 1 system, this mo de

is not propagating and is self-conjugate. That is why

it is called the Ma jorana mo de instead of a Ma jorana

particle (see Ref. [21]).

For simplicity, we consider the spinless (or fully spin

p olarized) chiral p

x

+ ip

y

sup er�uid in a 2 + 1 space�

time, which is describ ed by Eq. (3). As was shown in

Ref. [23], the vortices with the winding numb er � = 1

or � = � 1 b elong to the second class:

E

n

= � � !

0

n; (21)

and hence contain a single Ma jorana mo de at n = 0 .

This mo de is robust to p erturbations, since it is

self-conjugate and must therefore ob ey the condition

E = � E (see also [73]).

For the spin fermions in Eq. (2), there are two

AM mo des corresp onding to the two spin pro jections.

The even numb er of Ma jorana mo des is not robust to

p erturbations. For example, the spin-orbit interaction

splits two mo des with E

1

= � E

2

. The splitting is ab-

sent if there is some discrete symmetry b etween the

AM mo des, such as the mirror symmetry in Ref. [74].

In the spin p

x

+ ip

y

sup er�uids, there is a top olog-

ical ob ject that carries a single Ma jorana mo de. It is

the half-quantum vortex [75]. In a simple mo del, the

half-quantum vortex is the vortex with �

"

= 1 in one

spin comp onent, while the other spin comp onent has

zero vorticity �

#

= 0 . As a result, such vortex contains

a single Ma jorana mo de, which is robust to p erturba-

tions.

However, the p erturbations should not b e to o large.

In the limit when � is negative and large, the BCS is

transformed to the BEC of molecules, where the Ma jo-

rana mo de is absent. The Ma jorana mo de disapp ears

when the chemical p otential � crosses zero. At � = 0 ,

there is a top ological QPT, at which the top ological

invariant in Eq. (1) changes from N = 1 to N = 0 .

The top ological transition cannot o ccur adiabatically,

and in the intermediate state with � = 0 , the sp ec-

trum in the bulk b ecomes gapless. At � = 0 , the

Ma jorana mo de merges with the continuous sp ectrum
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of bulk quasiparticles and disapp ears at � < 0 . This

demonstrates the top ological origin of the AM mo de,

which exists inside the vortex only if the vacuum in the

bulk is top ologically nontrivial.

7. AN ANDREEV�MAJORANA FLAT BAND

IN A VORTEX IN WEYL SUPERFLUIDS

We can easily extend the consideration in Sec. 6 to

the 3 + 1 case in the weak-coupling limit. The levels

at p

z

6= 0 remain equidistant according to the Caroli�

de Gennes�Matricon solution, and they must b e sym-

metric with resp ect to E = 0 . This dictates the fol-

lowing mo di�cation of Eq. (20) for the most symmetric

vortices in

3

He- A and in the planar phase:

E

n

( p

z

) = � � !

0

( p

z

) n: (22)

This equation suggests a �at band in the vortex core

for n = 0 (Fig. 12 a ). We now show how such a �at

band emerges purely from top ological considerations,

which do not use the weak-coupling approximation.

Top ology of b ound states on vortices in 3 + 1 chiral

sup er�uids can b e obtained by dimensional extension

of the top ology in the 2 + 1 case. The AM mo de in a

p oint vortex of a fully gapp ed 2 + 1 chiral sup er�uid

a b
En(pz)

pz0

s-wave

En(pz)

pz0

p-wave

Fig. 12. ( a ) Schematic illustration of the sp ectrum

of fermionic b ound states in the core of a � = 1

vortex in the s -wave sup erconductor. In the weak-

coupling limit, the lowest branches are equidistant:

E

n

( p

z

) = � !

0

( p

z

) ( n + 1 = 2) . There are no zero-

energy states. The sp ectrum is doubly degenerate

with resp ect to spin. ( b ) The sp ectrum of b ound

states in the most symmetric vortices in the p -wave

sup er�uids: the chiral Weyl sup er�uid

3

He - A and the

time reversal invariant planar phase. The sp ectrum is

E

n

( p

z

) = � !

0

( p

z

) n . The branch with n = 0 forms a

�at band of AM mo des (solid line)

transforms into the �at band of AM mo des inside the

vortex line in 3 + 1 chiral sup er�uids with Weyl p oints

in the bulk. We consider the p

x

+ ip

y

state in Eq. (13)

again, and temp orarily cho ose the direction of the vor-

tex line along the z axis. In this case, p

z

is the quantum

numb er of b ound states in the vortex core. For each p

z

in the range � p

F

< p

z

< p

F

, the Green's function (13)

describ es the 2 + 1 chiral sup er�uid with the top olog-

ical invariant N ( j p

z

j < p

F

) = 1 in Eq. (14), and this

sup er�uid contains a p oint vortex. The p oint vortex in

the 2 + 1 top ologically nontrivial chiral sup er�uid con-

tains the AM mo de with zero energy. The continuum

of AM mo des in the range � p

F

< p

z

< p

F

forms the

�at band.

This is demonstrated in Fig. 13, where the vortex

axis is rotated through an angle � with resp ect to the

direction to the Weyl p oints. In this case, invariant

(14) b ecomes

N ( p

z

) = 1 ; j p

z

j < p

F

j cos � j ; (23)

N ( p

z

) = 0 ; j p

z

j > p

F

j cos � j : (24)

Such a �at band of AM mo des has b een predicted

by Kopnin and Salomaa in Ref. [28] for the � = 1 vor-

tex in

3

He- A . This �at band is doubly degenerate with

resp ect to spin and can therefore split, for example, due

to spin�orbit interaction (the nondegenerate �at band

of AM fermions o ccurs in the core of a half-quantum

vortex). In sup er�uid

3

He, the spin�orbit interaction is

very small and can b e neglected. However, there can b e

another source of splitting: the symmetry of the vortex

core can b e sp ontaneously broken [75].

The same doubly degenerate �at band should exist

in the � = 1 vortex in the 3 + 1 planar phase, where

the Green's function is

G

� 1

= ip

0

+ �

3

�

p

2

2 m

� �

�

+ �

1

( �

x

p

x

+ �

y

p

y

) : (25)

Here, p

2

= p

2

x

+ p

2

y

+ p

2

z

. For the 3 + 1 planar phase,

the top ological invariant N

K

in Eq. (6) is extended to

N

K

( p

z

) =

1

4 �

2

Tr

�

K

Z

dp

x

dp

y

dp

0

G@

p

x

�

� G

� 1

G@

p

y

G

� 1

G@

p

0

G

� 1

�

; (26)

giving N

K

( j p

z

j < p

F

cos � ) = 2 .

Both �at bands, in the A -phase and in the planar

phase, app ear only for � > 0 , when N

K

( p

z

= 0) = 2 .

For � < 0 , the sup er�uids are top ologically trivial,

N

K

( p

z

= 0) = 0 , and the �at band do es not exist.
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Weyl
point

N(pz) = 0
pz

Weyl
point

N(pz) = 1

N(pz) = 0

pF cos�

� pF cos�

flat
band

Fig. 13. Projections of Weyl p oints on the direction

of the vortex axis (the z axis) determine the b ound-

aries of the �at band in the vortex core. A Weyl p oint

in a 3D system represents the hedgehog (Berry-phase

monop ole) in momentum space [9 ]. For each plane

p

z

= const , we have the e�ective 2D system with

the fully gapp ed energy sp ectrum E

p

z

( p

x

; p

y

) , except

for the planes with p

z �

= � p

F

cos � , where the en-

ergy E

p

z

( p

x

; p

y

) has a no de due to the presence of

the hedgehogs. The top ological invariant N ( p

z

) in

(14) is nonzero for j p

z

j < p

F

j cos � j , which means

that for any value of the parameter p

z

in this interval,

the system b ehaves as a 2D top ological insulator or a

2D fully gapp ed top ological sup er�uid. A p oint vor-

tex in such 2D sup er�uids has a fermionic state with

exactly the zero energy. For the vortex line in the orig-

inal 3D system with Fermi p oints, this corresp onds to

the disp ersionless sp ectrum of fermion zero mo des in

the whole interval j p

z

j < p

F

j cos � j (thick line). The

�at band terminates at p oints, where the sp ectrum of

b ond states merges with the sp ectrum of bulk excita-

tions (see Fig. 14)

8. ANDREEV�MAJORANA BOUND STATES

IN A

3

He - B VORTEX

8.1. From the planar phase to the B -phase

Dimensional extension of the 2 + 1 planar phase

allows understanding the top ological prop erties of the

vortex sp ectrum in

3

He- B . The Hamiltonian (9) for

fermions in the bulk

3

He- B represents the 2 + 1 planar

phase at p

z

= 0 . That is why at p

z

= 0 , the � = 1 vor-

tex in

3

He- B contains two AM b ound states with zero

energy, if the tiny spin�orbit interaction is neglected

Weyl
point

continuous spectrum

E(pz)

flat bandWeyl
point

bound states

pz

Fig. 14. Schematic illustration of the sp ectrum of

b ound states E ( p

z

) in the vortex core of a Weyl su-

p er�uid. The branches of b ound states terminate at

p oints where their sp ectrum merges with the continu-

ous sp ectrum in the bulk. The �at band terminates at

p oints where the sp ectrum has zeros in the bulk, i. e.,

when it merges with Weyl p oints. This is a p -space

analog of a Dirac string terminating on a monop ole;

another analog is given by the Fermi arc in Fig. 1 c

and the core symmetry is not sp ontaneously broken.

For p

z

6= 0 , the zero-energy mo des are not supp orted

by top ology. Hence, the two branches of AM mo des

split, and we may exp ect the sp ectrum of AM b ound

states in the most symmetric vortex to b ehave as illus-

trated in Fig. 15.

For

3

He- B , which lives in the range of parameters

where N

K

6= 0 in Fig. 15 a , the gapless fermions in the

core of the most symmetric vortex (the so-called o -vor-

tex [75]) were found in Ref. [76]. On the other hand, in

the Bose�Einstein condensate (BEC) limit, when � is

negative and the Bose condensate of molecules o ccurs,

there are no gapless fermions (see Fig. 15 b ). Thus,

in the BCS�BEC crossover region, the sp ectrum of

fermions lo calized on vortices must b e reconstructed.

The top ological reconstruction of the fermionic sp ec-

trum in the vortex core cannot o ccur adiabatically. It

should o ccur only during a top ological QPT in the bulk,

when the bulk gapless state is crossed. Such a top olog-

ical transition o ccurs at � = 0 (see Fig. 4). At � < 0 ,

the top ological charge N

K

vanishes and simultaneously

the gap in the sp ectrum of core fermions arises (see

Fig. 15 b ).

This again demonstrates that the existence of

fermion zero mo des is closely related to the top ological

prop erties of the vacuum state. The reconstruction of

the sp ectrum of fermion zero mo des at the top ologi-
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Topological 3He-B:

En(pz) E(pz)

pz pz0 0

�  < 0�  > 0

NK = 2
a b

Non-topological 3He-B:
NK = 0

Fig. 15. ( a ) Schematic illustration of the sp ectrum of

fermionic b ound states in the core of the most symmet-

ric vortex ( o -vortex) in

3

He - B . Two AM states with

zero energy exist at p

z

= 0 . ( b ) The same vortex but

in the top ologically trivial state of the liquid, N

K

= 0 ,

do es not have fermion zero mo des. The sp ectrum of

b ound states is fully gapp ed. Fermion zero mo des dis-

app ear at the top ological QPT, which o ccurs in bulk

liquid at � = 0 . A similar situation may o ccur for

strings in color sup erconductors in quark matter [77 ]

cal QPT in the bulk can b e also seen for vortices in

relativistic sup erconductors [77].

8.2. Andreev�Ma jorana b ound states on

B -phase vortices with broken symmetry

The sp ectrum in Fig. 15 a is valid only for a vortex

state that resp ects all the p ossible symmetries of the

vortex core. These symmetries are the spatial parity P

and the discrete symmetry T U

2

. The latter is the sym-

metry under the time reversal T when it is accompa-

nied by the � -rotation U

2

ab out the axis p erp endicular

to the vortex axis. In the cores of the exp erimentally

observed vortices in

3

He- B , b oth discrete symmetries

are sp ontaneously broken, while the combined symme-

try P T U

2

is preserved [75]. Such a vortex is called the

v -vortex. The broken parity in the v -vortex leads to

mixing b etween the two spin comp onents in the core,

and as a result, the two AM mo des at p

z

= 0 split.

This leads to the sp ectrum in Fig. 16 [78].

In the weak-coupling regime mc

2

� � , a large num-

b er (of the order of

p

�=mc

2

) of branches app ear that

cross the zero energy. Each crossing p oint corresp onds

to a one-dimensional Fermi surface. This demonstrates

that the top ology in the bulk determines the sp ectrum

of the fermion zero mo des on the B -phase vortices only

En(pz)

n > 0

pz0

n < 0

Fig. 16. Sp ectrum of AM b ound states in an ax-

isymmetric v -vortex with sp ontaneously broken discrete

symmetry in

3

He - B . The AM states with zero energy

at p

z

= 0 , which were present in the most symmet-

ric o -vor tex in Fig. 15, do not exist any more. They

split due to the matrix element b etween the spin com-

p onents, which app ears due to symmetry breaking,

and move far away. There are many nontop ological

branches of the sp ectrum, which cross zero energy as

functions of p

z

and form one-dimensional Fermi sur-

faces. The numb er of such branches is of the order

of

p

�=mc

2

if the symmetry of the vortex core is not violated.

This is a consequence of the mo d 2 rule for Ma jo-

rana mo des: a top ological zero-energy state survives

symmetry breaking only in the case of an o dd numb er

of Ma jorana mo des. Hence, for realistic vortices, the

AM mo de can exist only in half-quantum vortices. For

other vortices, such as those in

3

He- B , a large num-

b er of energy levels is involved. That is why it is more

appropriate to use the quasiclassical approximation in

the analysis. It leads to other typ es of top ological in-

variants describing fermion zero mo des on vortices (see,

e. g., Refs. [ 9 ; 79 ]).

9. CONCLUSION

We considered the AM b ound states with zero en-

ergy on surfaces, interfaces, and vortices in di�erent

phases of p -wave sup er�uids:

3

He- A ,

3

He- B , planar

and p olar phases.
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These states are determined by top ology in the

bulk, and they disapp ear at the QPT from the top o-

logical to nontop ological state of the sup er�uid (see the

example in Fig. 15). This top ology demonstrates the

interplay of dimensions. In particular, the 0D Weyl

p oint (the Berry-phase monop ole in momentum space)

gives rise to a 1D Fermi arc on the surface (Sec. 6.1).

The 1D no dal line in the bulk pro duces the disp ersional

2D band of AM mo des on the surface (Sec. 5).

The interplay of dimensions also connects the AM

states in sup er�uids in di�erent dimensions. For exam-

ple, the prop erties of the sp ectrum of b ound states in

the 3D

3

He- B are connected to the prop erties of the

sp ectrum in the 2D planar phase (see Sec. 3 for edge

states and Sec. 7.1 for b ound states on vortices). The

0D AM mo de on a p oint vortex in a 2D chiral sup er-

�uid (Sec. 6) gives rise to a 1D �at band of AM mo des

on a vortex in the 3D chiral sup er�uid (Sec. 7).

The most robust zero-energy edge states o ccur on

the b oundary of

3

He- A , or in general on b oundaries

and interfaces of chiral sup er�uids with the top ological

invariant N in Eq. (1). In other phases, the existence of

zero-energy edge states is supp orted by symmetry, i. e.,

by the symmetry-protected top ological invariants N

K

in Eqs. (6) and (17). When the symmetry is violated in

the bulk or on the b oundary/interface, the AM b ound

states acquire a gap.

Concerning the AM states on vortices, only the

states on half-quantum vortices are fully robust to p er-

turbations. In singly quantized vortices, the fate of

zero-energy states dep ends on symmetry and its p ossi-

ble violation in the bulk or sp ontaneous breaking inside

the vortex core. This is a consequence of the Z

2

classi-

�cation of AM mo des on vortices. On the other hand,

the sp ontaneously broken symmetry inside the vortex

core may give rise to many nontop ological branches of

AM b ound states, which cross the zero energy as a

function of p

z

. This is demonstrated in Sec. 8.2.

We also mention the application to relativistic theo-

ries. The fermion zero mo des obtained in the Dirac sys-

tems, such as the mo des lo calized on strings in Ref. [80],

are not prop erly supp orted by top ology. The reason

for that is that the Dirac vacuum is marginal, and the

top ological invariants dep end on the regularization of

the Green's function in the ultraviolet [81]. For ex-

ample, in Fig. 4, the Dirac vacuum is on the b order

b etween the trivial vacuum with N

K

= 0 and the top o-

logical vacuum with N

K

= 2 . That is why the existence

of the mo des with exactly zero energy dep ends on the

b ehavior of the Green's function at in�nity.
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