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We discuss the interacting f(7T') gravity with pressureless matter in an FRW spacetime. We construct an f(T')
model by following the correspondence scheme incorporating a recently developed pilgrim dark energy model
and taking the Hubble horizon as the IR cutoff. We use constructed model to discuss the evolution trajectories
of the equation-of-state parameter, the wr — w/ phase plane, and state-finder parameters in the evolving uni-
verse. It is found that the equation-of-state parameter gives a phantom era of the accelerated universe for some
particular range of the pilgrim parameter. The w7 — w plane represents freezing regions only for an interacting
framework, while the ACDM limit is attained in the state-finder plane. We also investigate the first and second
laws of thermodynamics assuming equal temperatures at and inside the horizon in this scenario. Due to the
violation of the first law of thermodynamics in f(T') gravity, we explore the behavior of the entropy production
term. The validity of a generalized second law of thermodynamics depends on the present-day value of the

Hubble parameter.

DOI: 10.7868,/S0044451014070104

1. INTRODUCTION

There is increasing evidence of dark energy (DE)
over the last few years, which is assumed to be re-
sponsible for the accelerated expansion of the universe.
This has been confirmed by a variety of observational
constraints in the framework of different observational
schemes [1]. The standard cosmology has been remark-
ably successful, but there remain some serious unre-
solved issues including the search for the best DE candi-
date. The origin and nature of DE is still unknown ex-
cept in some particular ranges of the equation-of-state
(EoS) parameter w. In the absence of any solid argu-
ment in favor of a DE candidate, various approaches
have been adopted such as dynamical DE models, and
modified and higher-dimensional gravities.

The f(T) theory of gravity [2] (the generalized
teleparallel gravity, with 7" being the torsion scalar)
attracted many people to explore it in different cosmo-
logical scenarios. This theory deals with torsion via
the Weitzenbock connection (having zero curvature)
instead of the Levi-Civita connection in general rela-
tivity, which is responsible for curvature. The f(T)
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gravity has been studied extensively in application to
many phenomena, e.g., the accelerated expansion of
the universe [3], the correspondence (via quintessence,
tachyon, K-essence, and dilaton scalar fields) carried
out to discuss the dynamics of scalar fields as well
as scalar potentials [4, 5] and to distinguish the f(T)
model from the ACDM model, state-finder diagnos-
tics in a specific f(7) model [6], validity/violation of
the first and second laws of thermodynamics using the
Wald entropy, corrected-entropy versions and magnetic
field scenarios [7-9], and many more.

The search for a viable DE model is the basic key
leading to the reconstruction phenomenon, particularly
in modified theories of gravity. The corresponding en-
ergy densities are compared to construct the modified
function in the underlying gravity. In this manner, the
family of holographic reconstruction of DE models at-
tains a significant place in discussing the accelerated
expansion of the universe. Different f(7') models were
reconstructed via holographic DE (HDE) and new age-
graphic DE (original and entropy corrected) models
in [10]. The authors concluded that the correspond-
ing EoS parameter gives consistent results in entropy-
corrected models. In [11], an f(T") model corresponding
to the HDE model was obtained in a slightly different
way. The authors found that the reconstructed model
gives the phantom behavior as well as a unification of
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DE and dark matter. In [12], the reconstruction scheme
was extended to a general (m,n)-type HDE in f(T') as
well as f(R) gravity. The viability and cosmography of
the obtained models were also discussed there.

Holographic DE has been attributed to the forma-
tion of black holes. Recent observations regarding the
accelerating expansion of the universe are in favor of
a phantom-dominated universe with no expectation of
black holes. The idea of pilgrim DE (PDE) having the
key point of a phantom-like universe to prevent the
black hole formation was proposed in [13]. Recently,
the behavior of interacting PDE models corresponding
to the Hubble, event, and conformal age of the uni-
verse via different cosmological parameters such as EoS,
w —w' and state-finders was analyzed in [14]. The au-
thors found consistent results for positive and negative
values of the PDE parameter for these parameters.

In this paper, we construct the pilgrim f(7") model
via the reconstruction scheme and explore the EoS pa-
rameter, the wp —w/. phase plane, and state-finder pa-
rameters. We also investigate thermodynamic laws for
this model in f(T') gravity for same temperature of the
universe. This paper is arranged as follows. In Sec. 2,
we briefly describe f(T') gravity and its field equations,
and construct a pilgrim f(7') model. Section 3 is de-
voted to examining the evolution trajectories of some
cosmological parameters. The validity of first and sec-
ond laws of thermodynamics is investigated in this sce-
nario in Sec. 4. In the last section, we summarize the
results.

2. f(T) GRAVITY AND PILGRIM DE MODEL

In this section, we first briefly discuss f(T') gravity
and its field equations, and then construct the pilgrim
f(T) model via the correspondence scheme.

2.1. The field equations
The action for f(T') gravity [2] is defined as

2
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where m? = (87G)~" is the reduced Planck mass with
G being the gravitational constant,

h=+/—g = det(h%),

where g is the determinant of metric coefficients, hf,
is the tetrad field, and L,, is the Lagrangian den-
sity of matter in the universe. The tetrad field hj

is related to the metric tensor as g,, = nathh,’i,
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where 1,, = diag(1, —1, —1, —1) is the Minkowski space
metrix, the indices (a,b) represent tangent space coor-
dinates, (i, v) are the coordinate indices on the mani-
fold, and all these indices range 0,1, 2, 3. The variation
of action (1) with respect to the tetrad yields the field
equations

[h_lau(hsaw)“‘héTpuASpw] fr+

1 1
+ 8 0,(T) frr + Jhif = SKHETY (2)
where fr = df/dT, frr = d*f/dT?, and T} is the
energy—momentum tensor of perfect fluid. The anti-
symmetric torsion and superpotential tensors are

Ty = g (B hy, — Ouhyy),

1
Sy = (=T gt Tyt T 25, T g =26, T"],
which are used to define the torsion scalar as T =
= T‘fVSp’“’.

For a spatially flat Friedmann—Robertson—Walker
(FRW) universe, a straightforward choice of the tetrad
is

b, = diag(L.a(t), a(t). a(1)).

where a(t) is a scale factor. This leads to the expres-
sion for the torsion scalar T = —6H?, where H = a/a
is the Hubble parameter and a dot represents the time
derivative. The corresponding modified field equations
are

12H? fr + f = 2m;p,
ASH?*H frr — (12H* + 4H) fr — f = 2m,, *p.

(3)
(4)

Here, p and p denote the total energy density and pres-
sure of the universe, satisfying the energy conservation
equation

p+3H(p+p)=0. (5)
Equations (3) and (4) can be rewritten in terms of the
usual Friedmann equations as

5 1

w(ﬁmﬂLpT)a

. 1
H= ﬁ(pm"'pT‘FpT)a (6)

p p
where p,, is the matter contribution of energy density

with pressureless matter (p,, = 0), and torsion contri-
butions pr and pr take the form

m

hSE N

QT fr—f-T), (7)

pr =

|
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mf, )
pr = —7(—8HTfTT +

+ (2T —4H)fr — f — T +4H). (8)

In terms of fractional energy densities, the first equa-
tion in Eq. (6) can be expressed as

3m2H? ’

T
3m2H? ’

Qp =

The nature and properties of DE and dark matter
constitute one of the central problems in modern astro-
physics. Dark energy as the most dominant component
in the energy budget of the universe, having the possi-
bility of nongravitational coupling to other components
of the universe, in particular, to dark matter. This cou-
pling results in modifying the background evolution of
the dark sector, permitting any type of interaction to
be constrained. There is no serious evidence presented
up to now against this coupling. Here, we assume that
pressureless matter (cold dark matter) interacts with
the torsion component [15], and the corresponding non-
conservation equations are given by

pPm +3Hpm = Q,
pr +3Hpr(l +wr) = —Q,

where wp = pr/pr is the EoS parameter for the inter-
acting f(7T') gravity and @ represents the interaction
term that exchanges the energy between the torsion
component and pressureless matter. In general, ) can
be an arbitrary function of the energy densities of DE
and pressureless matter as well as the Hubble parame-
ter. Commonly, it induces simple choices of interaction
[15, 16] such as

Q = 3dH pp,

Q= 3ded67 Q= 3dH(pm+pde)7

where d is the coupling constant (interaction parame-
ter). Some of these interactions are used for mathemat-
ical simplicity, while others have been proposed within
some phenomenological approaches. The case d = 0
represents the noninteracting scenario. The sign of d
is important in the sense that it reveals an exchange of
energy: d > 0 implies that DE decays in dark matter,
while d < 0 means that dark matter decomposes into
DE. The positive coupling constant is favorable for the
validity of thermodynamic laws. However, it was ob-
served in [17] that @ must change its sign during the
evolution of the universe from the deceleration to ac-
celeration phase. Unfortunately, these choices for @@ do
not change their signs during the evolution, and this
requires new interacting terms.
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A new form of @) was introduced in [18] as

Q = 3dH (pge (12)

= Pm)-
As the universe evolves from the decelerated to acceler-
ated regime, this interaction term changes its sign from
negative to positive. Also, this form remains consistent
from the thermodynamic standpoint. Using Eqs. (7),
(9), and (12) in (11) and after some mathematical ma-
nipulations, we obtain the EoS parameter as

- O fp—f—T
- 2TfT — f - T — QTT(QTfTT+fT — 1)

TQT frr + fr —1) —1—d(1—g—:>] . (13)

2Tfr—f-T
In what follows, we adopt the reconstruction scenario
to find a viable f(7") model to discuss the evolution of
this parameter.

wT X

2.2. Pilgrim f(T) model

A well-known model was proposed in [19] as a possi-
ble candidate for DE with the help of an energy density
bound named the HDE. To achieve the compatibility
with an effective local quantum field, a relation be-
tween the ultraviolet (short-distance) and infrared (IR)
(long-distance) cutoffs was given in [20] on the basis of
limit set by the formation of a black hole. That is,
for the quantum zero-point energy density pp (which is
the result of a short-distance cutoff), the total energy
in a region of size L should not exceed the mass of a
black hole of the same size, which requires the largest
value of L to saturate this process. This is given by
pa = 3c®m2 L2, where ¢ is the holographic constant
and L is the IR cutoff. Several choices of L have been
proposed to distinguish different DE models within the
holographic family such as Hubble, apparent, and event
horizons, Granda—Oliveros cutoff [21], and so on.

Observations predict a phantom-like universe that
undergoes a big-rip singularity (where all gravitation-
ally bound objects are disrupted). On the other hand,
the idea of an energy density bound came into being
with the help of black hole formation in quantum grav-
ity. It was found in many attempts that the black hole
mass approaches zero or becomes zero when a phantom-
like fluid accretes onto the black hole [22]. Tt would
therefore be interesting to search for an appropriate
phantom-like DE model that prevents the formation
of black holes. This motivated Wei [13] to propose a
phantom-like DE model called the pilgrim DE (PDE)
model. This model inherits a strong repulsive force in
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order to prevent the formation of black holes. The PDE
has the form

pa =3P my LY, (14)
where € and u are dimensionless constants. We use this
model to obtain a viable f(7T") model under the recon-
struction scheme. We note that different versions of the
holographic family have been studied in f(T') gravity
to investigate more feasible results for the accelerating
expansion of the universe.

We here assume Hubble horizon L = 1/H as the
IR cutoff to find an f(7') model using Eq. (14). It
was shown in [23] that the choice of the Hubble hori-
zon as an IR cutoff in general relativity yields the same
evolution of DE and dark matter (pressureless matter)
and is therefore incompatible with the present status of
the universe. However, with the passage of time, this
deficiency has been resolved with the inclusion of an
interacting scenario [24]. By imposing the correspon-
dence of energy densities, px = pr, we obtain the f(T')
model with

&1

V6

T+

F(T) (—=T)'/% +

1-u/2,.2, . 2—u
6 €“my,

+ (=17)"*, (15)

u—1
where ¢y is an arbitrary constant, which can be deter-
mined in terms of boundary condition. It was argued
in [25] that the gravitational constant G is replaced by
an effective one in the nonlinear f(7T') gravity (in view
of Eq. (13)). In this regard, the present-day value of G
should be recovered from its effective value for a linear
f(T), which yields fr(To) = 1. Here, Ty = —6H3 and
Hy is the present-day value of the Hubble parameter.
Inserting the value of the first derivative of (15) in this
condition, we found

(16)

The holographic scenario becomes a physically viable
model when the interaction between DE and dark mat-
ter is taken into account [26]. In this respect, the pil-
grim f(7T') model may provide the viability in interac-
tion with cold dark matter.

3. SOME COSMOLOGICAL PARAMETERS

Here, we examine the evolution of the EoS param-
eter, the behavior of wr — w/, and the limit of the
ACDM model using state-finder pair for the pilgrim
f(T) model in an interacting scenario.
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Fig.1. Plot of the EoS parameter wr versus u for the
pilgrim f(T') model

3.1. The equation-of-state parameter

We explore the evolution of the EoS parameter for
the pilgrim f(7T") model in interacting as well as nonin-
teracting scenarios. Inserting Eq. (15) in (13), we have

b)) o

Its graph versus the PDE parameter u for different val-
ues of the interaction parameter d is shown in Fig. 1.
We assume d = 0, 0.5, 1 and the present-day values of
fractional energy densities 2, = 0.27 and Q7 = 0.73.
We plot wp versus two ranges of v similarly to the case
in general relativity [14], i.e., —2.5 < u < 2.5 and
3 < u < 6 in the upper and bottom panels in Fig. 1.
Initially, the EoS parameter represents a phantom re-
gion of the universe for v < 0 for all values of d, as
shown in the upper panel. As u increases, it crosses
the phantom barrier wp = —1 for d = 0,0.5,1 at the
respective value v = 0,0.5, 1. Thus, the EoS parameter
for the pilgrim f(T') model goes toward quintessence re-
gion and converges to the matter-dominated universe
for 0 < u < 2.5. On the other hand, in the bottom

wr
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panel for v > 3, the evolution of the EoS parameter
always stays in the phantom region of the universe.
Thus, the accelerating expansion of the universe con-
sistent with the observations is analyzed for the ranges
u < 0 and u > 3 in interacting as well as noninteracting
scenarios.

An wr — wl, analysis

Here, we address the w — w’ phase plane (where '
indicates the derivative of the EoS parameter with re-
spect to Ina) in order to elaborate the dynamical prop-
erties of the PDE model in f(T) gravity. This phase
plane was introduced in [27] in analyzing the evolv-
ing behavior of the quintessence DE model. The au-
thors of [27] found that the area occupied by this DE
model in the phase plane can be devided into thaw-
ing (w' > 0 when w < 0) and freezing regions (w’ < 0
when w < 0). The w — w’ analysis has attracted many
researchers for analyzing the dynamical behavior of dif-
ferent DE models such as quintom [28], phantom [29],
quintessence [30], HDE [31], PDE [14] and so on.

Taking the derivative of Eq. (17) with respect to
In a, we obtain

_ 6
2 — uQ7)?

whp = X

{U (U —1-d(1- g—m)) [Qrwr(Qr —1) —

T
— d(QT — Qm)] + d(2 - UQT) X

-5 e o

The plot of w/ with respect to wr for the pilgrim
f(T) model is shown in Fig. 2, which indicates that
this model meets the ACDM model only in the inter-
acting case d = 0.5. However, the present values are
wh = 0.1,—0.1 with respect to the value wy = —1 for
d =0, 1. It is also observed that the wr — w/. plane
represents the thawing (in the noninteracting and in-
teracting cases) and freezing regions (in the interacting
case only).

X

3.3. State-finder diagnostics

Many DE models have been proposed in order to ex-
plain the accelerating expansion of the universe. How-
ever a sensitive test is required, which can differenti-
ate between these models. The Hubble and deceler-
ation (¢ = —1 — H/H?) are geometrical parameters
that provide the expansion history of the universe but
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Fig.2. Plot of wr — wi for the pilgrim f(T) model

cannot differentiate between DE models. For this pur-
pose, two new parameters called state-finders were in-
troduced in [32] as

r—1
3q—1/2)

YTER

S =

(19)

The parameter r can also be written in terms of ¢
as r = 2¢> + ¢ — ¢'. These parameters exhibit well-
known regions in the s — r plane; for example, (r,s) =
= (1,0),(1,1) show the ACDM and CDM limits, while
the regions (s > 0 and r < 1) correspond to the phan-
tom and quintessence DE. Also, these parameters dis-
tinguish different DE models from the ACDM model
and the corresponding r — s plane provides the distance
of a given DE model from the ACDM limit.

The expressions for a state-finder pair for the pil-
grim f(7T) model are

3 9
r= 1—EQTLU%-I-EwT[QT(wT-I-l)-Fd(QT—Qm)], (20)
wh d
=1 - L 4 —(Qr — O 21
s +wr 3wT+QT( T ), (21)

where wr and w, are given in Eqs. (17) and (18). The
plot of state-finder parameters is shown in Fig. 3 with
the same assumptions for the cosmological parameters.
This shows that the trajectories of s — r in the nonin-
teracting and interacting cases meet the ACDM limit.
The trajectories also coincide with the behavior of the
Chaplygin gas model (where s < 0 and r > 1). The
quintessence and phantom DE regions are also obtained
in this s —r plane in the noninteracting and interacting
cases. We note that the s—r plane of the PDE model in
f(T) gravity is the combination of all possible existing
well-known regions, which is an interesting feature.
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Fig.3. Plot of state-finders for the pilgrim f(T)

model

4. THERMODYNAMICS

In this section, we discuss the nonequilibrium de-
scription [7, 33] of the first and second laws of ther-
modynamics in f(7T') gravity. Since this gravity is not
locally Lorentz invariant, there alway exists extra de-
grees of freedom leading to the violation of the first
law of thermodynamics [34, 35]. The system does not
remain in equilibrium, which results in an entropy pro-
duction term. To find this term, we rewrite Eqs. (3)
and (4) for convenience as follows

2 _ —

- Sm%fT (pm +PT)7
| : (22)
H=- 2m2f (pm + pr + P1),

where pr and pp are the redefined torsion contributions

m2
TP(Tf T—f),

5 (23)
m

pr = _p(4HfTT =Tfr+f).

The corresponding continuity equation yields
2T
2

which implies the nonconservation equation because
frr # 0 in a nonequilibrium system. We assume here
that the boundary of the universe is covered by the dy-
namical apparent horizon R4 [36] for which the Hawk-
ing temperature is given by

1 RA
Th=—[1- .
A 27rRA< QHRA>

pr+ 3H(pr + pr) = frr, (24)

For a flat FRW spacetime, it reduces to the Hubble
horizon. Using Eq. (22) in the time derivative of the
Hubble horizon, R4 = —HHR 4, yields

Jr_dRa
47G dt

In modified theories of gravity [37], the horizon
entropy S is called the Wald entropy (related to the
Noether charge method) and is expressed as S =
= A/4Gcsr. Here, Goyr = G/ f' is the effective gravi-
tational coupling, f’ is the derivative of f with respect
to the corresponding argument, and A = 47R? is the
area of the horizon. The Wald entropy in f(T') gravity
is given by

= H(pm + pr + pr)RY. (25)

Afr
4G’
which is also confirmed by a matter density pertur-
bation through G.rr. Taking time derivative of this
equation and using (25), we obtain

1 dS Ra dfr
L9 H
s @t = T H(pm +pr 4 Pr)RA + 55

Introducing the Hawking temperature in this equation
yields

S = (26)

(27)

TxdS = 4xH (pm + pr + pr)R3dt —

_ _ TR
—27(pm + pr + Pr) G Tadfr. (28)

The Misner—Sharp energy (E = R4/2G in gen-
eral relativity) can be modified accordingly as E =

= Rafr/2G. For the Hubble horizon, it becomes
E =3mH?frV = (pm + p1)V,

where V = (4/3)mR? is the volume inside the horizon.
Its first derivative takes the form

dE = —4wH (pm + pr + pr) R dt +
+ 47 (pm + pr)R4dRA + ];—gAdfT. (29)
By combining Eqs. (28) and (29), it follows that
TadS = —dE + 2w R% (pm + pr — Pr) dRA +
+ 2 (4 20 RAT) . (30)
With the help of the energy—momentum tensor rela-
tion, the work density can be defined as [38§]

1 =
W = —5(7’,,‘:”9“,, +TF guw) = W =

= %(pm +pr —pr). (31)
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Using this expression in Eq. (30) and rearranging, we
finally obtain

TudS + TadS, = —dE + WdV, (32)

where the additional term dS, is identified as the en-
tropy production term in the nonequilibrium descrip-
tion of the thermodynamics in f(7') gravity. It has the
general form

Ra
dSp QTAQ( +27wR 4 A)dfT
6r SHT +T
= > T dfr. (33
G T(4HT +T) fr.(33)

It is obvious that this additional term vanishes for
teleparallel gravity (f(7') = T'), the same as in the case
of general relativity.

To investigate the behavior of the entropy produc-
tion term for the pilgrim f(7") model, we take the sec-

ond derivative of (15),
(Hg u—2 u4)
—5 + H .

H3  u-1
Using this expression in Eq. (33), we have

2, ,2—u
UE mp

24w 1)

frr

dS, 6r (SHT +T)T _ muelmy" y
dt ~ G TAHT+1) " 26(u—1)
HA4H?> + H) (H uw—-2_,_
S P20 IR ) (34
% 2H2 + H <H4+u—1 (34)

It is observed that for the universe expanding with ac-
celeration, H? + H >0 Moreover, the phantom-like
accelerating expansion of the universe corresponds to
H > 0, while for negative H, quintessence-like behav-
ior of the universe is obtained. The behavior of S, in
the evolving universe depends on the signs of H and u.
We note that u # 1 in this case, whereas u = 0 gives
a vanishing entropy production term that corresponds
to the teleparallel gravity.

In the phantom-like accelerating universe, we ob-
serve that S, > 0 for u < 0 and u > 2, while the
range 0 < u < 1 represents the decreasing entropy-
production term. For the range 1 < u < 2, the behavior
of the entropy production term depends on the strength
of the involved terms, implying that Sp > 0 if the first
term dominates over the second term in Eq. (34), and
S, < 0 otherwise. A similar but inverted behavior is
observed for a quintessence-like accelerated expanding
universe, i.e., S'p < 0 for u < 0 and 2 < u, and the
range 0 < u < 1 corresponds to S, > 0. The time
derivative of the entropy production term becomes pos-
itive if the first term is dominated by the second one
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in the range 1 < u < 2, and turns out to be negative
otherwise. Thus, the pilgrim f(7") model takes differ-
ent ranges of the model parameter u for the validity of
the first law of thermodynamics. The teleparallel grav-
ity may be recovered with the passage of time for some
ranges of u if Sp decreases and approaches zero. It is
argued in [7] that with this type of behavior, entropy
production is not a permanent phenomenon.

Finally, we investigate the validity of the generali-
zed second law of thermodynamics in this scenario. If
we examine the increasing behavior of the total entropy
of the horizon (which includes the horizon entropy in
addition to the entropy of total matter), it implies the
validity of the generalized second law of thermodynam-
ics. The Gibbs equation for the entropy of total matter
inside the horizon is given by

TudSin, = d(V pr)+prdV = Vdt+(pr+pr) dV. (35)

Here, we assume the same temperature inside and out-
side the apparent horizon [7, 33]. Combining Eqs. (22),
(32), and (35), we express the time derivative of the to-
tal entropy of the horizon as

H2

fr. (36)
For the pilgrim f(7') model in this equation, the final

expression becomes
T2
R +
2GH*
2,2
ue*ms,

Ty

S+ S, + Sin =
—Uu

(Hy~' = H"™"). (37)
This equation implies that the generalized second law
of thermodynamics is satisfied for the present-day value
of the Hubble parameter with u > 0, u # 1 regardless
the sign of H.

5. CONCLUDING REMARKS

We have studied the interacting f(7) gravity with
pressureless matter in an FRW universe using the re-
construction scheme to discuss the evolution of the uni-
verse. For this purpose, we have used a recently pro-
posed PDE model having a strong repulsive force in or-
der to take the universe to big-rip singularity without
formation of black holes. The Hubble horizon is taken
as the IR cutoff, which gives consistent results with in-
teraction. To discuss the pilgrim f(7") model, we have
investigated the evolution trajectories of the EoS pa-
rameter, the wp —w/, phase plane, and the state-finder
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parameters. For three values of the interaction param-
eter d = 0,0.5, 1, the parameter wr versus the PDE pa-
rameter u represents consistent results for an accelerat-
ing universe (Fig. 1). In this regard, we have obtained
two ranges of u, i.e., u < 0 and u > 3 for both inter-
acting and noninteracting backgrounds. These ranges
indicate a phantom-dominated universe, where no pos-
sibility exists for the formation of a black hole.

The evolution trajectory of the wr —w/- plane incor-
porating the pilgrim f(7") model represents the ACDM
limit only for d = 0.5. It yields thawing regions for
all values of the interaction parameter and freezing
regions only in the interacting case. Also, the state-
finder parameters in s — r plane are found to meet all
possible existing regions (quintessence, phantom, and
Chaplygin gas). Finally, we have investigated the va-
lidity of the first and second laws of thermodynamics
in the nonequilibrium background under the assump-
tion of the same temperature of the universe. It is
found that the first law of thermodynamics is violated
in f(T) gravity due to the lack of local Lorentz invari-
ance, which results an entropy production term. We
have analyzed the behavior of this entropy production
term as well as the validity of the generalized second
law of thermodynamics for the pilgrim f(7T") model. It
is found that for a phantom-like universe (H > 0), the
entropy production term decreases for 0 < v < 1 and
increases for v < 0, 2 < u. However, its behavior de-
pends on the strength of the involved terms within the
range 1 < u < 2. For a quintessence-like universe, all
the results are inverted for the same ranges of the PDE
parameter wu.

In general relativity, the PDE model provides
phantom-like behavior with a Hubble horizon only
with d = 1 for all values of the PDE parameter u [14].
For the pilgrim f(T") model, the phantom-like universe
is attained for v < 0 and u > 3 in the interacting
as well as noninteracting cases. It is interesting to
mention here that our results are consistent with those
in [13, 14] for u < 0. In the w — w' analysis, the PDE
model meets the ACDM limit only in the noninteract-
ing case, with a freezing region in the interacting case,
while this limit and region are obtained only in the
interacting case for the pilgrim f(7') model. The s — r
plane recovers all the existing regions corresponding to
fixed values of (s, r) for both models. We can check the
cosmological evolution and thermodynamic behavior
of the pilgrim f(7T") model by taking the event horizon
as the boundary of the universe. The basic purpose
in developing the pilgrim model is to explain the fate
of black holes in the presence of a large amount of
phantom energy in the universe. Thus, it would be

an interesting and attractive idea to constrain model
parameters via modified theories of gravity by the
cosmographic technique. This helps in solving many
cosmological issues, offering a glimpse of one of the
notions (phantom energy) of the universe in the later
times.
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